Advertisement

The Modelling Language Zinc

  • Maria Garcia de la Banda
  • Kim Marriott
  • Reza Rafeh
  • Mark Wallace
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)

Abstract

We describe the Zinc modelling language. Zinc provides set constraints, user defined types, constrained types, and polymorphic predicates and functions. The last allows Zinc to be readily extended to different application domains by user-defined libraries. Zinc is designed to support a modelling methodology in which the same conceptual model can be automatically mapped into different design models, thus allowing modellers to easily “plug and play” with different solving techniques and so choose the most appropriate for that problem.

Keywords

Local Search Design Model Combinatorial Problem Constraint Programming Global Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flener, P., Pearson, J., Ågren, M.: Introducing esra, a relational language for modelling combinatorial problems. In: Bruynooghe, M. (ed.) LOPSTR 2004. LNCS, vol. 3018, pp. 214–232. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press (2002)Google Scholar
  3. 3.
    Frisch, A.M., Grum, M., Jefferson, C., Martinez-Hernandez, B., Miguel, I.: The essence of ESSENCE: A constraint language for specifying combinatorial problems. In: Fourth International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp. 73–88 (2005)Google Scholar
  4. 4.
    Gervet, C.: Large scale combinatorial optimization: A methodological viewpoint. Discrete Mathematics and Theoretical Computer Science, vol. 57, pp. 151–175. DIMACS (2001)Google Scholar
  5. 5.
    Jayaraman, B., Tambay, P.: Modeling engineering structures with constrained objects. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 28–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Michel, L., Van Hentenryck, P.: Localizer: A modeling language for local search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 237–251. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Van Hentenryck, P., Lustig, I., Michel, L.A., Puget, J.-F.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Weisstein, E.W.: Perfect square dissection. From MathWorld –A Wolfram Web Resource (1999), http://mathworld.wolfram.com/PerfectSquareDissection.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria Garcia de la Banda
    • 1
  • Kim Marriott
    • 1
  • Reza Rafeh
    • 1
  • Mark Wallace
    • 1
  1. 1.Clayton School of ITMonash UniversityAustralia

Personalised recommendations