Infinite Qualitative Simulations by Means of Constraint Programming

  • Krzysztof R. Apt
  • Sebastian Brand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)


We introduce a constraint-based framework for studying infinite qualitative simulations concerned with contingencies such as time, space, shape, size, abstracted into a finite set of qualitative relations. To define the simulations we combine constraints that formalize the background knowledge concerned with qualitative reasoning with appropriate inter-state constraints that are formulated using linear temporal logic.

We implemented this approach in a constraint programming system (ECL i PS e ) by drawing on the ideas from bounded model checking. The implementation became realistic only after several rounds of optimizations and experimentation with various heuristics.

The resulting system allows us to test and modify the problem specifications in a straightforward way and to combine various knowledge aspects. To demonstrate the expressiveness and simplicity of this approach we discuss in detail two examples: a navigation problem and a simulation of juggling.


Temporal Logic Constraint Program Constraint Satisfaction Problem Integrity Constraint Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Apt, K.R., Brand, S.: Constraint-based qualitative simulation. In: Proc. of 12th International Symposium on Temporal Representation and Reasoning (TIME 2005), pp. 26–34. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  4. 4.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artificial Intelligence 116 (2000)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. In: Advances in Computers, vol. 58. Academic Press, London (2003)Google Scholar
  6. 6.
    Brand, S.: Constraint propagation in presence of arrays. In: Apt, K.R., Barták, R., Monfroy, E., Rossi, F. (eds.) Proc. of 6th Workshop of the ERCIM Working Group on Constraints (2001)Google Scholar
  7. 7.
    Brand, S.: Relation variables in qualitative spatial reasoning. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 337–350. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Brzoska, C.: Temporal logic programming and its relation to constraint logic programming. In: Saraswat, V.A., Ueda, K. (eds.) Proc. of International Symposium on Logic Programming (ISLP 1991), pp. 661–677. MIT Press, Cambridge (1991)Google Scholar
  9. 9.
    Cui, Z., Cohn, A.G., Randell, D.A.: Qualitative simulation based on a logical formalism of space and time. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of 10th National Conference on Artificial Intelligence (AAAI 1992), pp. 679–684. AAAI Press, Menlo Park (1992)Google Scholar
  10. 10.
    Egenhofer, M.J.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Escrig, M.T., Toledo, F.: Qualitative Spatial Reasoning: Theory and Practice. Application to Robot Navigation. In: Frontiers in Artificial Intelligence and Applications, vol. 47. IOS Press, Amsterdam (1998)Google Scholar
  12. 12.
    Frank, A.U.: Qualitative spatial reasoning about distance and directions in geographic space. Journal of Visual Languages and Computing 3, 343–373 (1992)CrossRefGoogle Scholar
  13. 13.
    Gerevini, A., Renz, J.: Combining topological and size constraints for spatial reasoning. Artificial Intelligence 137(1-2), 1–42 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gifford, C.: Juggling. Usborne Publishing (1995)Google Scholar
  15. 15.
    Kuipers, B.: Qualitative reasoning: modeling and simulation with incomplete knowledge. MIT Press, Cambridge (1994)Google Scholar
  16. 16.
    Kuipers, B.: Qualitative simulation. In: Encyclopedia of Physical Science and Technology, 3rd edn., pp. 287–300. Academic Press, London (2001)Google Scholar
  17. 17.
    Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9(1), 23–44 (1998)CrossRefGoogle Scholar
  18. 18.
    Mohr, R., Masini, G.: Good old discrete relaxation. In: Kodratoff, Y. (ed.) Proc. of European Conference on Artificial Intelligence (ECAI 1988), pp. 651–656. Pitman publishers (1988)Google Scholar
  19. 19.
    Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: A challenge for automated theorem provers. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 786–790. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. Journal of Artificial Intelligence Research 15, 289–318 (2001)MATHMathSciNetGoogle Scholar
  21. 21.
    Tsang, E.P.K.: The consistent labeling problem in temporal reasoning. In: Forbus, K.S.H. (ed.) Proc. of 6th National Conference on Artificial Intelligence (AAAI 1987), pp. 251–255. AAAI Press, Menlo Park (1987)Google Scholar
  22. 22.
    Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic programming. ICL Systems Journal 12(1), 159–200 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Krzysztof R. Apt
    • 1
    • 2
  • Sebastian Brand
    • 3
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.University of AmsterdamThe Netherlands
  3. 3.Victoria Research LabNICTAMelbourneAustralia

Personalised recommendations