Advertisement

Abstract

We describe some new propagators for breaking symmetries in constraint satisfaction problems. We also introduce symmetry breaking constraints to deal with symmetries acting simultaneously on variables and values, conditional symmetries, as well as symmeties acting on set and other types of variables.

Keywords

Symmetry Breaking Constraint Programming Constraint Satisfaction Problem General Symmetry Variable Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, pp. 350–361. Springer, Heidelberg (1993)Google Scholar
  2. 2.
    Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for search problems. In: Proceedings of the 5th International Conference on Knowledge Representation and Reasoning (KR 1996), pp. 148–159 (1996)Google Scholar
  3. 3.
    Petrie, K.E., Smith, B.M.: Symmetry Breaking in Graceful Graphs. Technical Report APES-56a-2003, APES Research Group (2003)Google Scholar
  4. 4.
    Puget, J.F.: An efficient way of breaking value symmetries. In: Proceedings of the 21st National Conference on AI (2006)Google Scholar
  5. 5.
    Kiziltan, Z.: Symmetry Breaking Ordering Constraints. Ph.D thesis, Department of Information Science, Uppsala University (2004)Google Scholar
  6. 6.
    Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering constraints. Technical report T2002-18, Swedish Institute of Computer Science (2002)Google Scholar
  7. 7.
    Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In: Proceedings of the 19th National Conference on AI (2004)Google Scholar
  8. 8.
    Puget, J.F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–366 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Law, Y., Lee, J.: Global constraints for integer and set value precedence. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions for constraint satisfaction problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 17–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Gent, I., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.: Conditional symmetry breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Walsh, T.: Symmetry breaking using value precedence. In: Proceedings of the 17th ECAI, European Conference on Artificial Intelligence. IOS Press, Amsterdam (2006)Google Scholar
  15. 15.
    Puget, J.F.: Breaking symmetries in all different problems. In: Proceedings of 19th IJCAI, International Joint Conference on Artificial Intelligence, pp. 272–277 (2005)Google Scholar
  16. 16.
    Smith, B., Petrie, K., Gent, I.: Models and symmetry breaking for peacable armies of queens. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 271–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Sadler, A., Gervet, C.: Hybrid set domains to strengthen constraint propagation and reduce symmetries. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Hawkins, P., Lagoon, V., Stuckey, P.: Solving set constraint satisfaction problems using ROBDDs. Journal of Artificial Intelligence Research 24, 109–156 (2005)MATHCrossRefGoogle Scholar
  19. 19.
    Walsh, T.: Consistency and propagation with multiset constraints: A formal viewpoint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances in the presence of symmetries. In: Proceedings of the Design Automation Conference, pp. 731–736 (2002)Google Scholar
  22. 22.
    Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for Boolean satisfiability. In: Proceedings of the 18th International Joint Conference on AI, International Joint Conference on Artificial Intelligence, pp. 271–276 (2003)Google Scholar
  23. 23.
    Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. In: Proceedings of LICS workshop on Theory and Applications of Satisfiability Testing (SAT 2001) (2001)Google Scholar
  24. 24.
    Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row and column symmetry in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470. Springer, Heidelberg (2002)Google Scholar
  25. 25.
    Law, Y., Lee, J.: Symmetry Breaking Constraints for Value Symmetries in Constraint Satisfaction. Constraints (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toby Walsh
    • 1
  1. 1.National ICT Australia and School of CSEUniversity of New South WalesSydneyAustralia

Personalised recommendations