Invariants that incrementally maintain the value of expressions under assignments to their variables are a natural abstraction to build high-level local search algorithms. But their functionalities are not sufficient to allow arbitrary expressions as constraints or objective functions as in constraint programming. Differentiable invariants bridge this expressiveness gap. A differentiable invariant maintains the value of an expression and its variable gradients, it supports differentiation to evaluate the effect of local moves. The benefits of differentiable invariants are illustrated on a number of applications which feature complex, possibly reified, expressions and whose models are essentially similar to their CP counterparts. Experimental results demonstrate their practicability.


Objective Function Local Search Local Move Constraint Programming Local Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agren, M., Flener, P., Pearson, J.: Inferring Variable Conflicts for Local Search. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Gomes, C., Sellmann, M., van Es1, C., van Es, H.: The Challenge of Generating Spatially Balanced Scientific Experiment Designs. In: CP-AI-OR 2004, Nice (2004)Google Scholar
  3. 3.
    Michel, L., Van Hentenryck, P.: Localizer: A Modeling Language for Local Search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Michel, L., Van Hentenryck, P.: Localizer. Constraints 5, 41–82 (2000)CrossRefGoogle Scholar
  5. 5.
    Michel, L., Van Hentenryck, P.: A Constraint-Based Architecture for Local Search. In: OOPSLA 2002 (November 2002)Google Scholar
  6. 6.
    Smith, C., Gomes, C., Fernàndez, C.: Streamlining Local Search for Spatially Balanced Latin Squares. In: IJCAI 2005, Edinburgh, Scotland (July 2005)Google Scholar
  7. 7.
    Van Hentenryck, P.: Constraint and Integer Programming in OPL. Informs Journal on Computing 14(4), 345–372 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Van Hentenryck, P.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)Google Scholar
  9. 9.
    Van Hentenryck, P., Michel, L., Liu, L.: Constraint-Based Combinators for Local Search. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 47–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pascal Van Hentenryck
    • 1
  • Laurent Michel
    • 2
  1. 1.Brown UniversityProvidence
  2. 2.University of ConnecticutStorrs

Personalised recommendations