Advertisement

Abstract

In this paper we give an overview of applications of Constraint Programming for IP (Internet Protocol) data networks, and discuss the problem of Resilience Analysis in more detail. In this problem we try to predict the loading of a network in different failure scenarios, without knowing end-to-end flow values throughout the network; the inference is based only on observed link traffic values. The related problem of Traffic Flow Analysis aims to derive a traffic matrix from the observed link traffic data. This is a severely under-constrained problem, we can show that the obtained flow values vary widely in different, feasible solutions. Experimental results indicate that using the same data much more accurate, bounded results can be obtained for Resilience Analysis.

Keywords

Constraint Programming Network Design Problem Warehouse Location Secondary Path Link Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajili, F., Rodosek, R., Eremin, A.: A branch-price-and-propagate approach for optimising IGP weight setting subject to unique shortest paths. In: Proceedings of the 20th Annual ACM Symposium on Applied Computing (ACM SAC 2005), Santa Fe, New Mexico (March 2005) Google Scholar
  2. 2.
    Ajili, F., Rodosek, R., Eremin, A.: A scalable tabu search algorithm for optimising IGP routing. In: 2nd International Network Optimization Conference (INOC 2005), pp. 348–354 (March 2005)Google Scholar
  3. 3.
    Cao, J., Davis, D., Vander Weil, S., Yu, B.: Time-varying network tomography. Journal of the American Statistical Association (2000)Google Scholar
  4. 4.
    Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: Recent developments (2003)Google Scholar
  5. 5.
    Chabrier, A.: Heuristic branch-and-price-and-cut to solve a network design problem. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems CP-AI-OR 2003, Montreal, Canada (May 2003)Google Scholar
  6. 6.
    Chiopris, C., Fabris, M.: Optimal management of a large computer network with CHIP. In: 2nd Conf. Practical Applications of Prolog, London, UK (April 1994)Google Scholar
  7. 7.
    Chu, Y., Xia, Q.: Bandwidth-on-demand problem and temporal decomposition. In: 2nd International Network Optimization Conference (INOC 2005), Lisbon, Portugal, March 2005, pp. 542–550 (2005)Google Scholar
  8. 8.
    Coates, M., Hero, A., Nowak, R., Yu, B.: Internet tomography. IEEE Signal Processing Magazine (May 2002)Google Scholar
  9. 9.
    Cronholm, W., Ajili, F.: Strong cost-based filtering for Lagrange decomposition applied to network design. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 726–730. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Cronholm, W., Ajili, F.: Hybrid branch-and-price for multicast network design. In: 2nd International Network Optimization Conference (INOC 2005), Lisbon, Portugal, March 2005, pp. 796–802 (2005)Google Scholar
  11. 11.
    Cronholm, W., Ouaja, W., Ajili, F.: Strengthening optimality reasoning for a network routing application. In: 4th International Workshop on Cooperative Solvers in Constraint Programming (CoSolv 2004), Toronto, Canada (September 2004)Google Scholar
  12. 12.
    Cronholm, W., Ouaja, W., Ajili, F.: Strong reduced cost fixing in network routing. In: 2nd International Network Optimization Conference (INOC 2005), Lisbon, Portugal, March 2005, pp. 688–694 (2005)Google Scholar
  13. 13.
    Davie, B., Rekhter, Y.: MPLS: Technology and Applications. Morgan Kauffmann Publishers, San Francisco (2000)Google Scholar
  14. 14.
    Duffield, N., Lund, C., Thorup, M.: Charging from sampled network usage. In: SIGCOMM Internet Measurement workshop (November 2001)Google Scholar
  15. 15.
    Duffield, N.G., Grossglauser, M.: Trajectory sampling for direct traffic observation. IEEE/ACM Transactions on Networking, 226–237 (June 2001)Google Scholar
  16. 16.
    Eremin, A., Ajili, F., Rodosek, R.: A set-based approach to the optimal IGP weight setting problem. In: 2nd International Network Optimization Conference (INOC 2005), Lisbon, Portugal, March 2005, pp. 386–392 (2005)Google Scholar
  17. 17.
    Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: SIGCOMM 2002 (September 2002)Google Scholar
  18. 18.
    Frei, C., Faltings, B.: Resource allocation in networks using abstraction and constraint satisfaction techniques. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Fruehwirth, T., Brisset, P.: Optimal placement of base stations in wireless indoor telecommunication. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Goldschmidt, O.: ISP backbone traffic inference methods to support traffic engineering. In: Internet Statistics and Metrics Analysis (ISMA) Workshop, San Diego, CA (December 2000)Google Scholar
  21. 21.
    Grossglauser, M., Rexford, J.: Passive traffic measurement for IP operations. Technical report, ATT (2001)Google Scholar
  22. 22.
    Kamarainen, O., El Sakkout, H.: Local probing applied to network routing. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems CP-AI-OR 2004, Nice, France (April 2004)Google Scholar
  23. 23.
    Lauvergne, M., David, P., Boizumault, P.: Connections reservation with rerouting for ATM networks: A hybrid approach with constraints. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 649. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Le Pape, C., Perron, L., Régin, J.-C., Shaw, P.: Robust and parallel solving of a network design problem. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 633. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Lever, J.: A local search/constraint propagation hybrid for a network routing problem. In: The 17th International FLAIRS Conference (FLAIRS 2004), Miami Beach, Florida (May 2004)Google Scholar
  26. 26.
    Lever, J.: A local search/constraint propagation hybrid for a network routing problem. International Journal on Artificial Intelligence Tools 14(1-2), 43–60 (2005)CrossRefGoogle Scholar
  27. 27.
    Liatsos, V., Novello, S., El Sakkout, H.: A probe backtrack search algorithm for network routing. In: Proceedings of the Third International Workshop on Cooperative Solvers in Constraint Programming, CoSolv 2003, Kinsale, Ireland (September 2003)Google Scholar
  28. 28.
    Loudni, S., David, P., Boizumault, P.: On-line resource allocation for ATM networks with rerouting. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems CP-AI-OR 2003, Montreal, Canada (May 2003)Google Scholar
  29. 29.
    Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: Inferring link weights using end-to-end measurements. In: IMW 2002 (2002)Google Scholar
  30. 30.
    Medina, A., Fraleigh, C., Taft, N., Bhattacharyya, S., Diot, C.: A taxonomy of IP traffic matrices. In: Workshop on Scalability and Traffic Control in IP Networks at the SPIE ITCOM+OPTICOMM 2002 Conference, Boston, MA (June 2002)Google Scholar
  31. 31.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrices estimation: Existing techniques and new directions. In: ACM SIGCOMM 2002, Pittsburgh, PA (August 2002)Google Scholar
  32. 32.
    Michel, L., Van Hentenryck, P.: A simple tabu search for warehouse location. European Journal on Operations Research, 576–591 (2004)Google Scholar
  33. 33.
    Ouaja, W., Richards, B.: A hybrid solver for optimal routing of bandwidth-guaranteed traffic. In: INOC 2003, pp. 441–447 (2003)Google Scholar
  34. 34.
    Ouaja, W., Richards, B.: A hybrid multicommodity routing algorithm for traffic engineering. Networks 43(3), 125–140 (2004)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Ouaja, W., Richards, E.B.: Hybrid Lagrangian relaxation for bandwidth-constrained routing: Knapsack decomposition. In: 20th Annual ACM Symposium on Applied Computing (ACM SAC 2005), Santa Fe, New Mexico, March 2005, pp. 383–387 (2005) Google Scholar
  36. 36.
    Rodosek, R., Richards, B.: RiskWise constraint model. Internal Note (2000)Google Scholar
  37. 37.
    Ros, L., Creemers, T., Tourouta, E., Riera, J.: A global constraint model for integrated routeing and scheduling on a transmission network. In: 7th International Conference on Information Networks, Systems and Technologies, Minsk (October 2001)Google Scholar
  38. 38.
    Shang, Y., Fromherz, M., Zhang, Y., Crawford, L.S.: Constraint-based routing for ad-hoc networks. In: IEEE Int. Conf. on Information Technology: Research and Education (ITRE 2003), Newark, NJ, USA, August 2003, pp. 306–310 (2003)Google Scholar
  39. 39.
    Simonis, H.: Resilience analysis in MPLS networks. Technical report, Parc Technologies Ltd. (2003)Google Scholar
  40. 40.
    Simonis, H.: Constraint applications in networks. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 25. Elsevier, Amsterdam (2006)Google Scholar
  41. 41.
    Smith, B.M.: Symmetry and search in a network design problem. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 336–350. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Srinivasan, C., Viswanathan, A., Nadeau, T.D.: Multiprotocol label switching (MPLS) label switching router (LSR) management information base. Technical report, IETF (October 2003), draft-ietf-mpls-lsr-mib-13.txtGoogle Scholar
  43. 43.
    Symes, J.: Bandwidth-on-demand services using MPLS-TE. In: MPLS World Congress 2004, Paris, France (February 2004)Google Scholar
  44. 44.
    Tsang, Y., Coates, M., Nowak, R.: Passive network tomography using EM algorithms. In: IEEE Conf. Acoust. Speech and Signal Proc. (May 2001)Google Scholar
  45. 45.
    Van Hentenryck, P., Carillon, J.P.: Generality versus specificity: An experience with AI and OR techniques. In: AAAI, pp. 660–664 (1988)Google Scholar
  46. 46.
    Vanderbei, R., Iannone, J.: An EM approach to OD matrix estimation. Technical Report SOR 94–04. Princeton University, Princeton (1994)Google Scholar
  47. 47.
    Vardi, Y.: Network tomography: Estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, 365–377 (1996)Google Scholar
  48. 48.
    Xia, Q.: Traffic diversion problem: Reformulation and new solutions. In: 2nd International Network Optimization Conference (INOC 2005), Lisbon, Portugal, March 2005, pp. 235–241 (2005)Google Scholar
  49. 49.
    Xia, Q., Eremin, A., Wallace, M.: Problem decomposition for traffic diversions. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems CP-AI-OR 2004, Nice, France, April 2004, pp. 348–363 (2004)Google Scholar
  50. 50.
    Xia, Q., Simonis, H.: Primary/Secondary path generation problem: Reformulation, solutions and comparisons. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3420, pp. 611–619. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  51. 51.
    Yorke-Smith, N.: Reliable Constraint Reasoning with Uncertain Data. Ph.D thesis, IC-Parc, Imperial College London, University of London (June 2004)Google Scholar
  52. 52.
    Yorke-Smith, N., Gervet, C.: On constraint problems with incompleteor erroneous data. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 732. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  53. 53.
    Yorke-Smith, N., Gervet, C.: Tight and tractable reformulations for uncertain CSPs. In: CP 2004 Workshop on Modelling and Reformulating Constraint Satisfaction Problems, Toronto, Canada (September 2004)Google Scholar
  54. 54.
    Zhang, Y., Roughan, M., Duffield, N.G., Greenberg, A.: Fast accurate computation of large-scale IP traffic matrices from link loads. In: ACM Sigmetrics (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Helmut Simonis
    • 1
  1. 1.CrossCore Optimization LtdLondonUK

Personalised recommendations