Approximability of Integer Programming with Generalised Constraints

  • Peter Jonsson
  • Fredrik Kuivinen
  • Gustav Nordh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)


We study a family of problems, called Maximum Solution, where the objective is to maximise a linear goal function over the feasible integer assignments to a set of variables subject to a set of constraints. This problem is closely related to Integer Linear Programming.When the domain is Boolean (i.e. restricted to {0,1}), the maximum solution problem is identical to the well-studied Max Ones problem, and the approximability is completely understood for all restrictions on the underlying constraints. We continue this line of research by considering domains containing more than two elements. We present two main results: a complete classification for the approximability of all maximal constraint languages, and a complete classification of the approximability of the problem when the set of allowed constraints contains all permutation constraints.Our results are proved by using algebraic results from clone theory and the results indicates that this approach is very useful for classifying the approximability of certain optimisation problems.


Polynomial Time Constraint Satisfaction Problem Generalise Constraint Performance Ratio Maximum Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., Protasi, M.: Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, Heidelberg (1999)MATHGoogle Scholar
  2. 2.
    Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 649–658 (2002)Google Scholar
  3. 3.
    Bulatov, A.: A graph of a relational structure and constraint satisfaction problems. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 448–457 (2004)Google Scholar
  4. 4.
    Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC 2001), pp. 667–674 (2001)Google Scholar
  7. 7.
    Cohen, D.A., Cooper, M., Jeavons, P.G., Krokhin, A.A.: Soft constraints: Complexity and multimorphisms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 244–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cohen, D.A.: Tractable decision for a constraint language implies tractable search. Constraints 9(3), 219–229 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of Boolean constraint satisfaction problems. SIAM, Philadelphia (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Dalmau, V.: A new tractable class of constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence 44(1–2), 61–85 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1999)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  13. 13.
    Hochbaum, D.S., Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192 (1994)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hoffmann, C.M.: Group-Theoretic Algorithms and Graph Isomorphism. LNCS, vol. 136. Springer, Heidelberg (1982)MATHGoogle Scholar
  15. 15.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial Intelligence 79, 327–339 (1996)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Jonsson, P.: Near-optimal nonapproximability results for some NPO PB-complete problems. Information Processing Letters 68(5), 249–253 (1998)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Jonsson, P., Klasson, M., Krokhin, A.: The approximability of three-valued Max CSP. SIAM J. Comput. 35(6), 1329–1349 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Jonsson, P., Kuivinen, F., Nordh, G.: Approximability of integer programming with generalised constraints. CoRR, cs.CC/0602047 (2006)Google Scholar
  20. 20.
    Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kuivinen, F.: Tight approximability results for the maximum solution equation problem over z p. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 628–639. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Pöschel, R., Kaluznin, L.: Funktionen- und Relationenalgebren. DVW, Berlin (1979)Google Scholar
  23. 23.
    Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)MATHGoogle Scholar
  24. 24.
    Szczepara, B.: Minimal clones generated by groupoids. Ph.D thesis, Université de Móntreal (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Jonsson
    • 1
  • Fredrik Kuivinen
    • 1
  • Gustav Nordh
    • 1
  1. 1.Department of Computer and Information ScienceLinköpings UniversitetLinköpingSweden

Personalised recommendations