Advertisement

Algorithms and Constraint Programming

  • Fabrizio Grandoni
  • Giuseppe F. Italiano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)

Abstract

Constraint Programming is a powerful programming paradigm with a great impact on a number of important areas such as logic programming[45], concurrent programming[42], artificial intelligence[12], and combinatorial optimization[46]. We believe that constraint programming is also a rich source of many challenging algorithmic problems, and cooperations between the constraint programming and the algorithms communities could be beneficial to both areas.

Keywords

Steiner Tree Exact Algorithm Constraint Satisfaction Problem Binary Constraint Constraint Satisfaction Problem Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 856–857 (1999)Google Scholar
  2. 2.
    Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54, 168–204 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bessière, C.: Arc-consistency and arc-consistency again. In: National Conference on Artificial Intelligence (AAAI), pp. 179–190 (1994)Google Scholar
  4. 4.
    Bessière, C., Cordier, M.O.: Arc-consistency and arc-consistency again. In: National Conference on Artificial Intelligence (AAAI), pp. 108–113 (1993)Google Scholar
  5. 5.
    Bessière, C., Freuder, E., Regin, J.C.: Using inference to reduce arc consistency computation. In: International Joint Conference on Artificial Intelligence, pp. 592–598 (1995)Google Scholar
  6. 6.
    Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT. Theoretical Computer Science 329, 303–313 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Debruyne, R.: A property of path inverse consistency leading to an optimal PIC algorithm. In: European Conference on Artificial Intelligence, pp. 88–92 (2000)Google Scholar
  11. 11.
    Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted path consistency. In: Principles and Practice of Constraint Programming (CP), pp. 312–326 (1997)Google Scholar
  12. 12.
    Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence 34, 1–38 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Demetrescu, C., Finocchi, I., Italiano, G.F.: Dynamic Graphs, ch. 22. In: Handbook of Data Structures and Applications, ch. 22. CRC Press, Boca Raton (2004)Google Scholar
  14. 14.
    Demetrescu, C., Italiano, G.F.: Trade-Offs for Fully Dynamic Transitive Closure on DAGs: Breaking Through the O(n 2) Barrier. Journal of the ACM 52(2), 147–156 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Demetrescu, C., Italiano, G.F.: Dynamic Shortest Paths and Transitive Closure: Algorithmic Techniques and Data Structures. Journal of Discrete Algorithms 4(3) (September 2006)Google Scholar
  16. 16.
    Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1971/72)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Elfe, C.D., Freuder, E.C.: Neighborhood inverse consistency preprocessing. In: National Conference on Artificial Intelligence (AAAI)/Innovative Applications of Artificial Intelligence, vol. 1, pp. 202–208 (1996)Google Scholar
  18. 18.
    Eppstein, D.: The traveling salesman problem for cubic graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 307–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Erdős, P.: On the number of complete subgraphs contained in certain graphs. Magyar Tudomanyos Akademia Matematikai Kutató Intezetenek Közlemenyei 7, 459–464 (1962)Google Scholar
  20. 20.
    Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: domination - a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Fomin, F., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the European Association for Theoretical Computer Science 87, 47–77 (2005)MATHMathSciNetGoogle Scholar
  22. 22.
    Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: A simple o(20.288 n) independent set algorithm. In: Fomin, F., Grandoni, F., Kratsch, D. (eds.) ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 18–25 (2006)Google Scholar
  23. 23.
    Fomin, F.V., Kratsch, D., Todinca, I.: Exact (Exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: ACM Symposium on the Theory of Computing (STOC), pp. 246–251 (1983)Google Scholar
  25. 25.
    Glover, F.: Maximum matching in convex bipartite graph. Naval Research Logistic Quarterly 14, 313–316 (1967)MATHCrossRefGoogle Scholar
  26. 26.
    Grandoni, F., Italiano, G.F.: Improved algorithms for max-restricted path consistency. In: Principles and Practice of Constraint Programming (CP), pp. 858–862 (2003)Google Scholar
  27. 27.
    Grandoni, F., Italiano, G.F.: Decremental clique problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 142–153. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM 10, 196–210 (1962)MATHMathSciNetGoogle Scholar
  29. 29.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing 2, 225–231 (1973)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Huang, X., Pan, V.: Fast rectangular matrix multiplication and applications. Journal of Complexity 14(2), 257–299 (1998)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Iwama, K.: Worst-case upper bounds for k-SAT. Bulletin of the European Association for Theoretical Computer Science 82, 61–71 (2004)MATHMathSciNetGoogle Scholar
  33. 33.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)MATHCrossRefGoogle Scholar
  34. 34.
    Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 306–319. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
    Mohr, R., Henderson, T.C.: Arc and path consistency revised. Artificial Intelligence 28, 225–233 (1986)CrossRefGoogle Scholar
  36. 36.
    Mölle, D., Richter, S., Rossmanith, P.: A faster algorithm for the Steiner tree problem. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 561–570. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Puget, J.-F.: A fast algorithm for the bound consistency of alldiff constraints. In: National Conference on Artificial Intelligence (AAAI)/Innovative Applications of Artificial Intelligence, pp. 359–366 (1998)Google Scholar
  39. 39.
    Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  40. 40.
    Regin, J.C.: A filtering algorithm for constraints of difference in CSP. In: National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 362–367 (1994)Google Scholar
  41. 41.
    Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3), 425–440 (1986)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Saraswat, V.A.: Concurrent Logic Programming Languages. Ph.D thesis, Carnegie-Mellon University (1987)Google Scholar
  43. 43.
    Schöning, U.: Algorithmics in exponential time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 36–43. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  44. 44.
    Stergiou, K.: Representation and Reasoning with Non-Binary Constraints. Ph.D thesis, University of Strathclyde, Glasgow, Scotland (2001)Google Scholar
  45. 45.
    Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge (1989)Google Scholar
  46. 46.
    Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press, Cambridge (1999)Google Scholar
  47. 47.
    Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  48. 48.
    Woeginger, G.J.: Exact algorithms for np-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  49. 49.
    Woeginger, G.J.: Space and time complexity of exact algorithms: Some open problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabrizio Grandoni
    • 1
  • Giuseppe F. Italiano
    • 2
  1. 1.Dipartimento di InformaticaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations