Localization of an Underwater Robot Using Interval Constraint Propagation

  • Luc Jaulin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)


Since electromagnetic waves are strongly attenuated inside the water, the satellite based global positioning system (GPS) cannot be used by submarine robots except at the surface of the water. This paper shows that the localization problem in deep water can often be cast into a continuous constraints satisfaction problem where interval constraints propagation algorithms are particularly efficient. The efficiency of the resulting propagation methods is illustrated on the localization of a submarine robot, named Redermor. The experiments have been collected by the GESMA (Groupe d’Etude Sous-Marine de l’Atlantique) in the Douarnenez bay, in Brittany.


Global Position System Constraint Propagation Autonomous Underwater Vehicle Redundant Constraint Underwater Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leonard, J.J., Durrant-Whyte, H.F.: Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research 11(4) (1992)Google Scholar
  2. 2.
    van Hentenryck, P., Deville, Y., Michel, L.: Numerica: A Modeling Language for Global Optimization. MIT Press, Boston (1997)Google Scholar
  3. 3.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceedings of the International Conference on Logic Programming, Las Cruces, NM, pp. 230–244 (1999)Google Scholar
  4. 4.
    Sam-Haroud, D.: Constraint consistency techniques for continuous domains. Ph.D dissertation 1423, Swiss Federal Institute of Technology in Lausanne, Switzerland (1995)Google Scholar
  5. 5.
    van Emden, M.: Algorithmic power from declarative use of redundant constraints. Constraints 4(4), 363–381 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Drocourt, C., Delahoche, L., Brassart, E., Marhic, B., Clérentin, A.: Incremental construction of the robot’s environmental map using interval analysis. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 127–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Porta, J.M.: Cuikslam: A kinematics-based approach to slam. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona (Spain), pp. 2436–2442 (2005)Google Scholar
  8. 8.
    Baguenard, X.: Propagation de contraintes sur les intervalles. Application á l’étalonnage des robots. Ph.D dissertation, Université d’Angers, Angers, France (2005), Available at: www.istia.univ-angers.fr/~baguenar/
  9. 9.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation. In: Robust Control and Robotics. Springer, London (2001)Google Scholar
  10. 10.
    Raissi, R., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40, 1771–1777 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lydoire, F., Poignet, P.: Nonlinear predictive control using constraints satisfaction. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 142–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Vinas, P.H., Sainz, M.A., Vehi, J., Jaulin, L.: Quantified set inversion algorithm with applications to control. Reliable computing 11(5), 369–382 (2006)Google Scholar
  13. 13.
    Delanoue, N., Jaulin, L., Cottenceau, B.: Using interval arithmetic to prove that a set is path-connected. Theoretical Computer Science, Special issue: Real Numbers and Computers 351(1), 119–128 (2006)MATHMathSciNetGoogle Scholar
  14. 14.
    Janssen, M., Van Hentenryck, P., Deville, Y.: A constraint satisfaction approach for enclosing solutions to parametric ordinary differential equations. SIAM Journal on Numerical Analysis 40(5), 1896–1939 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jaulin, L.: Nonlinear bounded-error state estimation of continuous-time systems. Automatica 38, 1079–1082 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gning, A.: Localisation garantie d’automobiles. Contribution aux techniques de satisfaction de contraintes sur les intervalles. Ph.D dissertation, Université de Technologie de Compiégne, Compiégne, France (2006)Google Scholar
  17. 17.
    Bouron, P.: Méthodes ensemblistes pour le diagnostic, l’estimation d’état et la fusion de données temporelles. Ph.D dissertation, Université de Compiègne, Compiègne, France (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luc Jaulin
    • 1
    • 2
    • 3
  1. 1.E3I2ENSIETABrest
  2. 2.E3I2ENSIETAFrance
  3. 3.GESMA (Groupe d’Etude Sous-Marine de l’Atlantique)BrestFrance

Personalised recommendations