Formalizing Construction Knowledge for Concurrent Performance-Based Design

  • Martin Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4200)


The capability to represent design solutions with product models has increased significantly in recent years. Correspondingly the formalization of design methods has progressed for several traditional design disciplines, making the multi-disciplinary design process increasingly performance and computer-based. A similar formalization of construction concepts is needed so that construction professionals can participate as a discipline contributing to the model-based design of a facility and its development processes and organization. This paper presents research that aims at formalizing construction concepts to make them self-aware in the context of virtual computer models of facilities and their construction schedules and organizations. It also describes a research method that has been developed at the Center for Integrated Facility Engineering at Stanford University to address the challenge of carrying out scientifically sound research in a project-based industry like construction.


Product Model Construction Project Construction Knowledge Build Information Modeling Theme Park 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hänninen, R.: Building Lifecycle Performance Management and Integrated Design Processes: How to Benefit from Building Information Models and Interoperability in Performance Management. Invited Presentation Watson Seminar Series Stanford Univ. (2006)Google Scholar
  2. 2.
    Eastman, C.: General Purpose Building Description Systems. Computer Aided Design 8(1), 17–26 (1976)CrossRefGoogle Scholar
  3. 3.
    Bjork, B.C.: Basic structure of a proposed building product model. Computer Aided Design 21(2), 71–78 (1989)CrossRefGoogle Scholar
  4. 4.
    Eastman, C.M., Siabiris, A.: Generic building product model incorporating building type information. Automation in Construction 3(4), 283–304 (1995)CrossRefGoogle Scholar
  5. 5.
    Karola, A., Lahtela, H., Hänninen, R., Hitchcock, R., Chen, Q.Y., Dajka, S., Hagstrom, K.: BSPro COM-Server - Interoperability between software tools using industrial foundation classes. Energy and Buildings 34(9), 901–907 (2002)CrossRefGoogle Scholar
  6. 6.
    Lee, K., Chin, S., Kim, J.: A core system for design information management using industry foundation classes. Computer-Aided Civil and Infrastructure Eng. 18(4), 286–298 (2003)CrossRefGoogle Scholar
  7. 7.
    Eastman, C., Wang, F., You, S.J., Yang, D.: Deployment of an AEC industry sector product model. Computer Aided Design 37(12), 1214–1228 (2005)CrossRefGoogle Scholar
  8. 8.
    Rivard, H., Bedard, C., Ha, K.H., Fazio, P.: Shared conceptual model for the building envelope design process. Bldg. & Env. 34(2), 175–187 (1999)CrossRefGoogle Scholar
  9. 9.
    O’Sullivan, D.T.J., Keane, M.M., Kelliher, D., Hitchcock, R.J.: Improving building operation by tracking performance metrics throughout the building lifecycle (BLC). Energy and Buildings 36(11), 1075–1090 (2004)CrossRefGoogle Scholar
  10. 10.
    Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005)CrossRefGoogle Scholar
  11. 11.
    Mora, R., Rivard, H., Bedard, C.: Computer representation to support conceptual structural design within a building architectural context. J. Comput. Civ. Eng. 20(2), 76–87 (2006)CrossRefGoogle Scholar
  12. 12.
    Howard, H.C., Levitt, R.E., Paulson, B.C., Pohl, J.G., Tatum, C.B.: Computer integration: Reducing fragmentation in AEC industry. J. Comput. Civ. Eng. 3(1), 18–32 (1989)CrossRefGoogle Scholar
  13. 13.
    Rivard, H., Fenves, S.J.: Representation for conceptual design of buildings. J. Comput. Civ. Eng. 14(3), 151–159 (2000)CrossRefGoogle Scholar
  14. 14.
    Hegazy, T., Zaneldin, E., Grierson, D.: Improving design coordination for building projects. I: Information model. J. Constr. Eng. & Mgt. 127(4), 322–329 (2001)CrossRefGoogle Scholar
  15. 15.
    Gero, J.S., Louis, S.J.: Improving Pareto optimal designs using genetic algorithms. Microcomputers in Civ. Eng. 10(4), 239–247 (1995)Google Scholar
  16. 16.
    Turk, Z.: Phenomenologial foundations of conceptual product modelling in architecture, engineering and construction. AI in Eng. 15(2), 83–92 (2001)Google Scholar
  17. 17.
    Kam, C., Fischer, M., Hänninen, R., Karjalainen, A., Laitinen, J.: The product model and Fourth Dimension project. ITCon 8, 137–166 (2003)Google Scholar
  18. 18.
    Demian, P., Fruchter, R.: Measuring relevance in support of design reuse from archives of building product models. J. Comput. Civ. Eng. 19(2), 119–136 (2005)CrossRefGoogle Scholar
  19. 19.
    Russell, J.S., Gugel, J.G., Radtke, M.W.: Comparative analysis of three constructibility approaches. J. Constr. Eng. & Mgt. 120(1), 180–195 (1994)CrossRefGoogle Scholar
  20. 20.
    O’Connor, J.T.: Impacts of Constructibility Improvement. J. Constr. Eng. & Mgt. 111(4), 404–410 (1985)CrossRefGoogle Scholar
  21. 21.
    Tatum, C.B.: Improving Constructibility During Conceptual Planning. J. Constr. Eng. & Mgt. 113(2), 191–207 (1987)CrossRefGoogle Scholar
  22. 22.
    Boeke Jr., E.H.: Design for constructibility. A contractor’s view Concrete Constr. 35(2), 3 p. (1990)Google Scholar
  23. 23.
    Constructibility and constructibility programs. White paper: J. Constr. Eng. & Mgt. 117(1), 67–89 (1991)Google Scholar
  24. 24.
    O’Connor, J.T., Miller, S.J.: Constructibility Programs: Method for Assessment and Benchmarking. J. Performance of Constructed Facilities 8(1), 46–64 (1994)CrossRefGoogle Scholar
  25. 25.
    Glavinich, T.E.: Improving constructibility during design phase. J. Arch. Eng. 1(2), 73–76 (1995)CrossRefGoogle Scholar
  26. 26.
    Fisher, D.J., Anderson, S.D., Rahman, S.P.: Integrating constructibility tools into constructibility review process. J. Constr. Eng. & Mgt. 126(2), 89–96 (2000)CrossRefGoogle Scholar
  27. 27.
    Pocock, J.B., Kuennen, S.T., Gambatese, J., Rauschkolb, J.: Constructibility state of practice report. J. Constr. Eng. & Mgt. 132(4), 373–383 (2006)CrossRefGoogle Scholar
  28. 28.
    Fischer, M., Tatum, C.B.: Characteristics of Design-Relevant Constructibility Knowledge. J. Constr. Eng. & Mgt. 123(3), 253–260 (1997)CrossRefGoogle Scholar
  29. 29.
    Pulaski, M.H., Horman, M.J.: Organizing constructibility knowledge for design. J. Constr. Eng. & Mgt. 131(8), 911–919 (2005)CrossRefGoogle Scholar
  30. 30.
    Paulson, B.C.: Interactive Graphics for Simulating Construction Operations. J. Constr. Div. 104(1), 69–76 (1978)Google Scholar
  31. 31.
    Cleveland Jr., A.B.: Real-time animation of construction activities. Constr. Congr. I - Excellence in the Constructed Project, 238–243 (1989)Google Scholar
  32. 32.
    Retik, A., Warszawski, A., Banai, A.: Use of computer graphics as a scheduling tool. Bldg. & Env. 25(2), 133–142 (1990)CrossRefGoogle Scholar
  33. 33.
    Fischer, M., Liston, K., Schwegler, B.R.: Interactive 4D Project Management System. In: 2nd Civ. Eng. Conf. in the Asian Region, pp. 367–372 (2001)Google Scholar
  34. 34.
    Fischer, M., Haymaker, J., Liston, K.: Benefits of 3D and 4D Models for Facility Managers and AEC Service Providers. In: Issa, R.R.A., Flood, I., O’Brien, W. (eds.) 4D CAD and Visualization in Construction - Developments and Applications, Balkema, pp. 1–32 (2003)Google Scholar
  35. 35.
    Chau, K.W., Anson, M., Zhang, J.P.: Four-dimensional visualization of construction scheduling and site utilization. J. Constr. Eng. & Mgt. 130(4), 560–598 (2004)CrossRefGoogle Scholar
  36. 36.
    Kamat, V.R., Martinez, J.C.: Comparison of simulation-driven construction operations visualization and 4D CAD. In: Winter Simulation Conf., vol. 2, pp. 1765–1770 (2002)Google Scholar
  37. 37.
    Haymaker, J., Fischer, M.: 4D Modeling on the Walt Disney Concert Hall. Tec21 38, 7–12 (2001)Google Scholar
  38. 38.
    Fischer, M.: The Benefits of Virtual Building Tools. Civ. Eng. 73(8), 60–67 (2003)Google Scholar
  39. 39.
    Liston, K., Fischer, M., Winograd, T.: Focused Sharing of Information for Multidisciplinary Decision Making by Project Teams. ITCon 6, 69–81 (2001)Google Scholar
  40. 40.
    Khanzode, A., Fischer, M., Reed, D.: Case Study of the Implementation of the Lean Project Delivery System (LPDS) using Virtual Building Technologies on a large Health-care Project. In: 13th Annual Conf. of the Int. Group for Lean Constr., pp. 153–160 (2005)Google Scholar
  41. 41.
    Rischmoller, L., Alarcon, L.F., Koskela, L.: Improving value generation in the design process of industrial projects using CAVT. J. Mgt. in Eng. 22(2), 52–60 (2006)CrossRefGoogle Scholar
  42. 42.
    Hendrickson, C., Zozaya-Gorostiza, C., Rehak, D., Baracco-Miller, E., Lim, P.: Expert System for Construction Planning. Comput. Civ. Eng. 1(4), 253–269 (1987)CrossRefGoogle Scholar
  43. 43.
    Fisher, D.J., Rajan, N.: Automated constructibility analysis of work-zone traffic-control planning. J. Constr. Eng. & Mgt. 122(1), 36–43 (1996)CrossRefGoogle Scholar
  44. 44.
    Poon, J.: Development of an expert system modelling the construction process. J. Constr. Research 5(1), 125–138 (2004)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Darwiche, A., Levitt, R., Hayes-Roth, B.: OARPLAN: Generating Project Plans by Reasoning about Objects, Actions and Resources. AI EDAM 2(3), 169–181 (1988)Google Scholar
  46. 46.
    Cherneff, J., Logcher, R., Sriram, D.: Integrating CAD with construction-schedule generation. J. Comput. Civ. Eng. 5(1), 64–84 (1991)CrossRefGoogle Scholar
  47. 47.
    Fischer, M.A.: Automating Constructibility Reasoning with a Geometrical and Topological Project Model. Comput. Syst. in Eng. 4(2-3), 179–192 (1993)CrossRefGoogle Scholar
  48. 48.
    Chevallier, N., Russell, A.D.: Automated schedule generation. Canad. J. Civ. Eng. 25(6), 1059–1077 (1998)CrossRefGoogle Scholar
  49. 49.
    Nakasuka, S., Yoshida, T.: Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool. Int. J. of Production Research 30(2), 411–431 (1992)CrossRefMATHGoogle Scholar
  50. 50.
    Skibniewski, M., Arciszewski, T., Lueprasert, K.: Constructibility analysis: Machine learning approach. J. Comput. Civ. Eng. 2(1), 8–16 (1997)CrossRefGoogle Scholar
  51. 51.
    Brilakis, I., Soibelman, L., Shinagawa, Y.: Material-based construction site image retrieval. J. Comput. Civ. Eng. 19(4), 341–355 (2005)CrossRefGoogle Scholar
  52. 52.
    Schmitt, G., Engeli, M., Kurmann, D., Faltings, B., Monier, S.: Multi-agent interaction in a complex virtual design environment. AI Communications 9(2), 74–78 (1996)Google Scholar
  53. 53.
    Schnellenbach-Held, M., Geibig, O.: Intelligent agents in civil engineering. In: Int. Conf. on Comput. Civ. Eng., pp. 989–998 (2005)Google Scholar
  54. 54.
    Ito, K.: Utilization of 3-D graphical simulation with object-oriented product model for building construction process. Congr. on Comput. Civ. Eng., 73–78 (1988)Google Scholar
  55. 55.
    Froese, T.M., Paulson Jr., B.C.: Integrating project management systems through shared object-oriented project models. In: Int. Conf. on Applications of AI in Eng., pp. 69–85 (1992)Google Scholar
  56. 56.
    Froese, T.: Models of construction process information. J. Comput. Civ. Eng. 10(3), 183–193 (1996)CrossRefGoogle Scholar
  57. 57.
    Stuurstraat, N., Tolman, F.: Product modeling approach to building knowledge integration. Automation in Construction 8(3), 269–275 (1999)CrossRefGoogle Scholar
  58. 58.
    Halfawy, M., Froese, T.: Building integrated architecture/engineering/construction systems using smart objects: Methodology and implementation. J. Comput. Civ. Eng. 19(2), 172–181 (2005)CrossRefGoogle Scholar
  59. 59.
    Shen, Z., Issa, R.A., O’Brien, W., Flood, I.: A trade construction knowledge module to enable use of design component data in project management. In: Int. Conf. on Comput. Civ. Eng., pp. 1595–1604 (2005)Google Scholar
  60. 60.
    Lee, S.H., Pena-Mora, F., Park, M.: Dynamic planning and control methodology for strategic and operational construction project management. Automation in Construction 15(1), 84–97 (2006)CrossRefGoogle Scholar
  61. 61.
    Ugwu, O.O., Anumba, C.J., Thorpe, A.: Ontological foundations for agent support in constructibility assessment of steel structures - A case study. Automation in Construction 14(1), 99–114 (2005)CrossRefGoogle Scholar
  62. 62.
    Udaipurwala, A.H., Russell, A.D.: Hierarchical clustering for interpretation of spatial configuration. Constr. Research Congr. - Broadening Perspectives, 1137–1147 (2005)Google Scholar
  63. 63.
    Anumba, C.J., Baldwin, A.N., Bouchlaghem, D., Prasad, B., Cutting-Decelle, A.F., Dufau, J., Mommessin, M.: Integrating concurrent engineering concepts in a steelwork construction project. Conc. Eng. Research & Applications 8(3), 199–212 (2000)Google Scholar
  64. 64.
    Navon, R., Shapira, A., Shechori, Y.: Automated rebar constructibility diagnosis. J. Constr. Eng. & Mgt. 126(5), 389–397 (2000)CrossRefGoogle Scholar
  65. 65.
    Milberg, C., Tommelein, I.: Role of Tolerances and Process Capability Data In Product and Process Design Integration. Construction Research Congr. - Winds of Change: Integration and Innovation in Construction, pp. 795–802 (2003)Google Scholar
  66. 66.
    Clayton, M.J., Kunz, J.C., Fischer, M.A.: Rapid Conceptual Design Evaluation Using a Virtual Product Model. Eng. Applications of AI 9(4), 439–451 (1996)Google Scholar
  67. 67.
    Clayton, M.J., Teicholz, P., Fischer, M., Kunz, J.: Virtual components consisting of form, function, and behavior. Automation in Construction 8, 351–367 (1999)CrossRefGoogle Scholar
  68. 68.
    O’Brien, W.J.: Capacity Costing Approaches for Construction Supply-Chain Management. Ph.D. Thesis, Stanford Univ. (1998)Google Scholar
  69. 69.
    Fischer, M.A., Aalami, F.: Scheduling with Computer-Interpretable Construction Method Models. J. Constr. Eng. & Mgt. 122(4), 337–347 (1996)CrossRefGoogle Scholar
  70. 70.
    Luiten, G.T., Tolman, F., Fischer, M.A.: Project-modelling in AEC to integrate design and construction. Computers in Industry 35(1), 13–29 (1998)CrossRefGoogle Scholar
  71. 71.
    Akinci, B., Fischer, M., Kunz, J.: Automated Generation of Work Spaces Required by Construction Activities. J. Constr. Eng. & Mgt. 128(4), 306–315 (2002)CrossRefGoogle Scholar
  72. 72.
    Staub-French, S., Fischer, M., Kunz, J., Paulson, B.: A generic feature-driven activity-based cost estimation process. Advanced Eng. Informatics 17(1), 23–39 (2003)CrossRefGoogle Scholar
  73. 73.
    Akbas, R.: Geometry Based Modeling and Simulation of Construction Processes. Ph.D. Thesis, Stanford Univ. (2003)Google Scholar
  74. 74.
    Koo, B.: Formalizing Construction Sequencing Constraints for the Rapid Generation of Scheduling Alternatives. Ph.D. Thesis, Stanford Univ. (2003)Google Scholar
  75. 75.
    Haymaker, J., Kunz, J., Suter, B., Fischer, M.: Perspectors: composable, reusable reasoning modules to construct an engineering view from other engineering views. Advanced Eng. Informatics 18(1), 49–67 (2004)CrossRefGoogle Scholar
  76. 76.
    Kiviniemi, A.: Product Model Based Requirements Management. Ph.D. Thesis, Stanford Univ. (2005)Google Scholar
  77. 77.
    Kam, C.: Dynamic Decision Breakdown Structure: Ontology, Methodology, and Frame-work For Information Management In Support Of Decision-Enabling Tasks in the Building Industry. Ph.D. Thesis, Stanford Univ. (2005)Google Scholar
  78. 78.
    Reinhardt, J., Akinci, B., Garrett, J.H.: Navigational models for computer supported project Management tasks on construction sites. J. Comput. Civ. Eng. 18(4), 281–290 (2004)CrossRefGoogle Scholar
  79. 79.
    Hammad, A., Garrett Jr., J.H., Karimi, H.A.: Mobile Infrastructure Management Support System Considering Location and Task Awareness. In: Towards a Vision for Information Technology in Civ. Eng. Conf., pp. 157–166 (2003)Google Scholar
  80. 80.
    Christiansen, T.: Modeling Efficiency and Effectiveness of Coordination in Engineering Design Teams. Ph.D. Thesis, Stanford Univ. (1993)Google Scholar
  81. 81.
    Clayton, J., Fischer, M., Teicholz, P., Kunz, J.: The Charrette Testing Method for CAD Research. In: Hershberger, R., Kihl, M. (eds.) Applied Research in Architecture and Planning, vol. 2, pp. 83–91 (1996)Google Scholar
  82. 82.
    Kunz, J.: Concurrent Knowledge Systems Engineering. Working Paper 5, CIFE, Stanford Univ. (1989)Google Scholar
  83. 83.
    Yin, R.: Applications of Case Study Research, 2nd edn. Sage Publications, Thousand Oaks (1994)Google Scholar
  84. 84.
    Hampson, K.: Technology Strategy and Competitive Performance: A Study of Bridge Construction. Ph.D. Thesis, Stanford Univ. (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Fischer
    • 1
  1. 1.Department of Civil and Environmental EngineeringTerman Engineering CenterStanfordUSA

Personalised recommendations