Derivation of a Suitable Finite Test Suite for Customized Probabilistic Systems

  • Luis F. Llana-Díaz
  • Manuel Núñez
  • Ismael Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4229)


In order to check the conformance of an IUT (implementation under test) with respect to a specification, it is not feasible, in general, to test the whole set of IUT available behaviors. In some situations, testing the behavior of the IUT assuming that it is stimulated by a given usage model is more appropriate. Specifically, if we consider that specifications and usage models are defined in probabilistic terms, then by applying a finite set of tests to the IUT we can compute a relevant metric: An upper bound of the probability that a user following the usage model finds an error in the IUT. We also present a method to find an optimal (with respect to the number of inputs) set of tests that minimizes that upper bound.


Output State Test Suite User Model Input State Probabilistic Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bosik, B.S., Uyar, M.U.: Finite state machine based formal methods in protocol conformance testing. Computer Networks & ISDN Systems 22, 7–33 (1991)CrossRefGoogle Scholar
  2. 2.
    Bottaci, L., Mresa, E.S.: Efficiency of mutation operators and selective mutation strategies: An empirical study. Software Testing, Verification and Reliability 9, 205–232 (1999)CrossRefGoogle Scholar
  3. 3.
    Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Christoff, I.: Testing equivalences and fully abstract models for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 126–140. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions on Software Engineering 3, 279–290 (1977)CrossRefMATHGoogle Scholar
  9. 9.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)MATHGoogle Scholar
  10. 10.
    Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Transactions on Software Engineering 8, 371–379 (1982)CrossRefGoogle Scholar
  11. 11.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  12. 12.
    Llana-Díaz, L.F., Núñez, M., Rodríguez, I.: Customized testing for probabilistic systems. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 87–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–3), 228–248 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1–2), 117–177 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Núñez, M., Rodríguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Núñez, M., de Frutos, D.: Testing semantics for probabilistic LOTOS. In: Formal Description Techniques VIII, pp. 365–380. Chapman & Hall, Boca Raton (1995)Google Scholar
  17. 17.
    Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Rodríguez, I., Merayo, M.G., Núñez, M.: A logic for assessing sets of heterogeneous testing hypotheses. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 39–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software – Concepts and Tools 17(3), 103–120 (1996)MATHGoogle Scholar
  22. 22.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)MATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Luis F. Llana-Díaz
    • 1
  • Manuel Núñez
    • 1
  • Ismael Rodríguez
    • 1
  1. 1.Dept. Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridMadridSpain

Personalised recommendations