Minimizing Coordination Channels in Distributed Testing

  • Guy-Vincent Jourdan
  • Hasan Ural
  • Hüsnü Yenigün
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4229)


Testing may be used to show that a system under test conforms to its specification. In the case of a distributed system, one may have to use a distributed test architecture, involving p testers in order to test the system under test. These p testers may under some circumstances have to coordinate their actions with each other using external coordination channels. This may require the use of up to p 2p unidirectional coordination channels in the test architecture, which can be an extensive and expensive setup. In this paper, we propose a method to generate checking sequences while minimizing the number of required coordination channels, by adapting existing methods that generate checking sequences to be applied in a centralized test architecture. We consider the case of unidirectional and bidirectional coordination channels, and the case of transitive coordination.


System Under Test Synchronization Problem Euler Tour Check Sequence Coordination Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - A survey. Proceedings of the IEEE 84, 1090–1126 (1996)CrossRefGoogle Scholar
  2. 2.
    Gill, A.: Introduction to The Theory of Finite State Machines. McGraw Hill, New York (1962)zbMATHGoogle Scholar
  3. 3.
    Ural, H., Wu, X., Zhang, F.: On minimizing the length of checking sequences. IEEE Transactions on Computers 46, 93–99 (1997)CrossRefGoogle Scholar
  4. 4.
    Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions on Computers 51, 1111–1117 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tekle, K.T., Ural, H., Yalcin, M.C., Yenigun, H.: Generalizing redundancy elimination in checking sequences. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 915–926. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Yao, M., Petrenko, A., von Bochmann, G.: Conformance testing of protocol machines without reset. In: Protocol Specification, Testing and Verification, vol. XIII, pp. 241–256 (1993)Google Scholar
  7. 7.
    Chen, J., Hierons, R.M., Ural, H.: Conditions for resolving observability problems in distributed testing. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 229–242. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Hierons, R.M., Ural, H.: Resolving observability problems in distributed test architectures. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 219–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Sarikaya, B., von Bochmann, G.: Synchronization and specification issues in protocol testing. IEEE Transactions on Communications 32, 389–395 (1984)CrossRefGoogle Scholar
  10. 10.
    Luo, G., Dssouli, R., von Bochmann, G., Venkataram, P., Ghedamsi, A.: Test generation with respect to distributed interfaces. Comput. Stand. Interfaces 16, 119–132 (1994)CrossRefGoogle Scholar
  11. 11.
    Tai, K., Young, Y.: Synchronizable test sequences of finite state machines. Computer Networks and ISDN Systems 30, 1111–1134 (1998)CrossRefGoogle Scholar
  12. 12.
    Hierons, R.M.: Testing a distributed system: Generating minimal synchronised test sequences that detect output-shifting faults. Information and Software Technology 43, 551–560 (2001)CrossRefGoogle Scholar
  13. 13.
    Khoumsi, A.: A temporal approach for testing distributed systems. IEEE Transactions on Software Engineering 28, 1085–1103 (2002)CrossRefGoogle Scholar
  14. 14.
    Wu, W.J., Chen, W.H., Tang, C.Y.: Synchronizable for multi-party protocol conformance testing. Computer Communications 21, 1177–1183 (1998)CrossRefGoogle Scholar
  15. 15.
    Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing. Inform. Software Technol. 41, 767–780 (1999)CrossRefGoogle Scholar
  16. 16.
    Boyd, S.H., Ural, H.: The synchronization problem in protocol testing and its complexity. Information Processing Letters 40, 131–136 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: Protocol Specification, Testing and Verification, vol. V, pp. 483–494. Elsevier Science, North Holland (1985)Google Scholar
  18. 18.
    Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers. In: Protocol Specification, Testing and Verification, vol. VI, pp. 217–229. Elsevier Science, North Holland (1986)Google Scholar
  19. 19.
    Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. The Journal of Supercomputing 24, 203–211 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hierons, R.M., Ural, H.: Uio sequence based checking sequence for distributed test architectures. Information and Software Technology 45, 798–803 (2003)CrossRefGoogle Scholar
  21. 21.
    Chen, J., Ural, H., Hierons, R.M.: Overcoming observability problems in distributed test architectures. Information Processing Letters (to appear)Google Scholar
  22. 22.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5, 653–665 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Guy-Vincent Jourdan
    • 1
  • Hasan Ural
    • 1
  • Hüsnü Yenigün
    • 2
  1. 1.School of Information Technology and Engineering (SITE)University of OttawaOttawaCanada
  2. 2.Faculty of Engineering and Natural SciencesSabancı UniversityTuzlaTurkey

Personalised recommendations