Advertisement

Optimized Colored Nets Unfolding

  • Fabrice Kordon
  • Alban Linard
  • Emmanuel Paviot-Adet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4229)

Abstract

As some structural properties, like generative families of positive P-invariants, can only be computed in P/T nets, unfolding of Colored Petri Nets is of interest. However, it may generate huge nets that cannot be stored concretely in memory. In some cases, removing the dead parts of the unfolded net can dramatically reduce its size, but this operation requires the unfolded net to be represented anyway. This paper presents a symbolic representation of unfolded nets using Data Decision Diagrams. This technique allows to store very large models and manipulate them for optimization purpose.

References

  1. 1.
    Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and statecharts to analysable Petri net models. In: WOSP 2002: Proceedings of the 3rd int. workshop on Software and performance, pp. 35–45. ACM Press, New York (2002)Google Scholar
  2. 2.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chiola, G., Dutheillet, C., Franceschini, G., Haddad, S.: On Well-Formed Coloured Nets and their Symbolic Reachability Graph. In: High-Level Petri Nets. Theory and Application. LNCS. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data decision diagrams for petri net analysis. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 101–120. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Couvreur, J.-M., Haddad, S., Peyre, J.F.: Generative families of positive invariants in coloured nets sub-classes. In: Rozenberg, G. (ed.) Applications and Theory of Petri Nets. LNCS, pp. 51–70. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    de Groot, A., Hooman, J., Kordon, F., Paviot-Adet, E., Vernier-Mounier, I., Lemoine, M., Gaudiere, G., Winter, V., Kapur, D.: A survey: Applying formal methods to a software intensive system. In: 6th International Symposium on High-Assurance Systems Engineering, pp. 55–64. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  7. 7.
    Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the Formal Verification of Middleware Behavioral Properties. In: Proceedings of the 9th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004). ENTCS, vol. 133, pp. 139–157. Elsevier, Amsterdam (2004)Google Scholar
  8. 8.
    Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci. 14, 317–336 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mäkelä, M.: Optimising enabling tests and unfoldings of algebraic system nets. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 283–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Letters 12(3), 115–116 (1981)CrossRefzbMATHGoogle Scholar
  11. 11.
    Valk, R.: Basic definitions. In: Girault, C., Valk, R. (eds.) Petri nets and system engineering, ch. 4, 1st edn., pp. 41–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic Symmetry Detection in Well-Formed Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 82–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Fabrice Kordon
    • 1
  • Alban Linard
    • 1
  • Emmanuel Paviot-Adet
    • 1
  1. 1.Université P. & M. Curie - Paris 6, CNRS UMR 7606 – LIP6/MoVeParis CEDEX 05France

Personalised recommendations