Modelling and Analysing Genetic Networks: From Boolean Networks to Petri Nets

  • L. J. Steggles
  • Richard Banks
  • Anil Wipat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


In order to understand complex genetic regulatory networks researchers require automated formal modelling techniques that provide appropriate analysis tools. In this paper we propose a new qualitative model for genetic regulatory networks based on Petri nets and detail a process for automatically constructing these models using logic minimization. We take as our starting point the Boolean network approach in which regulatory entities are viewed abstractly as binary switches. The idea is to extract terms representing a Boolean network using logic minimization and to then directly translate these terms into appropriate Petri net control structures. The resulting compact Petri net model addresses a number of shortcomings associated with Boolean networks and is particularly suited to analysis using the wide range of Petri net tools. We demonstrate our approach by presenting a detailed case study in which the genetic regulatory network underlying the nutritional stress response in Escherichia coli is modelled and analysed.


Model Check Truth Table Genetic Network Boolean Network Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from small number of gene expression patterns under the Boolean network model. In: Proceedings of Pacific Symp. on Biocomputing, vol. 4, pp. 17–28 (1999)Google Scholar
  2. 2.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21, i19–i28 (2005)CrossRefGoogle Scholar
  3. 3.
    Bower, J.M., Bolouri, H.: Computational Modelling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Breeding, K.J.: Digital Design Fundamentals. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  5. 5.
    Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic networks: From logical regulatory graphs to standard Petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 137–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Comet, J.-P., Klaudel, H., Liauzu, S.: Modeling Multi-valued Genetic Regulatory Networks Using High-Level Petri Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 208–227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23(2-3), 151–195 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gershenson, C.: Classification of random boolean networks. In: Standish, R.K., et al. (eds.) Proc. of the 8th Int. Conf. on Artificial Life, pp. 1–8. MIT Press, Cambridge (2002)Google Scholar
  9. 9.
    Goss, P.J.E., Peccoud, J.: Quantitative modelling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of America 95(12), 6750–6755 (1998)CrossRefGoogle Scholar
  10. 10.
    Grossman, P.: Discrete Mathematics for Computing, 2nd edn. Palgrave MacMillan, Basingstoke (2002)Google Scholar
  11. 11.
    Heiner, M., Koch, I., Voss, K.: Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Jensen, K. (ed.) Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2001), pp. 15–34. Aarhus University (2001)Google Scholar
  12. 12.
    Heiner, M., Koch, I., Will, J.: Model validation of biological pathways using Petri nets – demonstrated for apoptosis. Biosystems 75(1-3), 15–28 (2004)CrossRefGoogle Scholar
  13. 13.
    Hengge-Aronis, R.: The general stress response in Escherichia coli. In: Storz, G., Hengge-Aronis, R. (eds.) Bacterial Stress Responses, pp. 161–178. ASM Press (2000)Google Scholar
  14. 14.
    Huang, S.: Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Journal of Molecular Medicine 77, 469–480 (1999)CrossRefGoogle Scholar
  15. 15.
    Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. Ph. D. Thesis, School of Computing Science, University of Newcastle upon Tyne (2003)Google Scholar
  16. 16.
    Luque, B., Ballesteros, F.J.: Random Walk Networks. Physica A: Statistical Mechanics and its Applications 342(1-2), 207–213 (2004)CrossRefGoogle Scholar
  17. 17.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, pp. 338–349 (2000)Google Scholar
  18. 18.
    Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  19. 19.
    Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Computers in Biology and Medicine 26(1), 9–24 (1996)CrossRefGoogle Scholar
  20. 20.
    Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative Simulation of the Nutritional Stress Response in Escherichia coli. INRIA, Rapport de Reacherche no. 5412 (December 2004)Google Scholar
  21. 21.
    Reisig, W.: Petri Nets, An Introduction. In: Brauer, W., et al. (eds.) EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1985)Google Scholar
  22. 22.
    Reisig, W., Rozenberg, G.: APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)MATHCrossRefGoogle Scholar
  23. 23.
    Shaw, O.J., Harwood, C., Wipat, A., Steggles, L.J.: SARGE: A tool for creation of putative genetic networks. Bioinformatics 20(18), 3638–3640 (2004)CrossRefGoogle Scholar
  24. 24.
    Shaw, O.J., Steggles, L.J., Wipat, A.: Automatic Parameterisation of Stochastic Petri Net Models of Biological Networks. Electronic Notes in Theoretical Computing Science 151(3), 111–129 (2006)CrossRefGoogle Scholar
  25. 25.
    Simão, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative Modelling of Regulated Metabolic Pathways: Application to the Tryptophan Biosynthesis in E. Coli. Bioinformatics 21, 190–196 (2005)Google Scholar
  26. 26.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)Google Scholar
  27. 27.
    Szallasi, Z., Liang, S.: Modeling the Normal and Neoplastic Cell Cycle with “Realistic Boolean Genetic Networks”: Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies. In: Pacific Symposium on Biocomputing, vol. 3, pp. 66–76 (1998)Google Scholar
  28. 28.
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L. J. Steggles
    • 1
  • Richard Banks
    • 1
  • Anil Wipat
    • 1
  1. 1.School of Computing ScienceUniversity of NewcastleUK

Personalised recommendations