Stronger Computational Modelling of Signalling Pathways Using Both Continuous and Discrete-State Methods

  • Muffy Calder
  • Adam Duguid
  • Stephen Gilmore
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


Starting from a biochemical signalling pathway model expressed in a process algebra enriched with quantitative information we automatically derive both continuous-space and discrete-state representations suitable for numerical evaluation. We compare results obtained using implicit numerical differentiation formulae to those obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results.


Epidermal Growth Factor Receptor Model Checker Stochastic Simulation Process Algebra System Biology Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)CrossRefGoogle Scholar
  2. 2.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  3. 3.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Ingolfsdottir, A., Nielson, H.R. (eds.) Proceedings of the BioConcur Workshop on Concurrent Models in Molecular Biology, London, England (August 2004)Google Scholar
  4. 4.
    Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Plotkin, G. (ed.) Proceedings of Computational Methods in Systems Biology (CMSB 2005), Edinburgh, Scotland, pp. 204–215 (April 2005)Google Scholar
  5. 5.
    Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Transactions on Computational Systems Biology (2006); Extended version of [3] (to appear)Google Scholar
  7. 7.
    Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.-H.: Modelling and simulation of intracellular dynamics: Choosing an appropriate framework. IEEE Transactions on Nanobioscience 3(3), 200–207 (2004)CrossRefGoogle Scholar
  8. 8.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  9. 9.
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. J. Comp. Phys. 119, 8229–8234 (2003)Google Scholar
  11. 11.
    Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. Journal of Chemical Physics 119(24), 12784–12794 (2003)CrossRefGoogle Scholar
  12. 12.
    Cao, Y., Gillespie, D.T., Petzold, L.: Accelerated stochastic simulation of the stiff enzyme-substrate reaction. Journal of Chemical Physics 123, 144917–1 – 144917–12 (2005)Google Scholar
  13. 13.
    Gillespie, D., Petzold, L.: System Modelling in Cellular Biology. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) Numerical Simulation for Biochemical Kinetics. MIT Press, Cambridge (2006)Google Scholar
  14. 14.
    Chatterjee, A., Mayawala, K., Edwards, J.S., Vlachos, D.G.: Time accelerated Monte Carlo simulations of biological networks using the binomial τ-leap method. Bioinformatics 21(9), 2136–2137 (2005)CrossRefGoogle Scholar
  15. 15.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the PRISM model checker. In: Plotkin, G. (ed.) Proceedings of Computational Methods in Systems Biology (CMSB 2005), Edinburgh, Scotland (April 2005)Google Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time Markov chains. ACM Transactions on Computational Logic 1, 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Cardelli, L.: Mapk cascade. Microsoft Research Cambridge UK technical note (July 2005), Available on-line at:
  19. 19.
    Chi-Ying, F.H., Ferrell Jr., J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Biochemistry 93(19), 10078–10083 (1996)Google Scholar
  20. 20.
    Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, pp. 239–248. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  21. 21.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, Torino, Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  22. 22.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Buchholtz, M., Gilmore, S., Haenel, V., Montangero, C.: End-to-end integrated security and performance analysis on the DEGAS Choreographer platform. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 286–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. J. Bioinf. Comp. Biol. 3(2), 415–436 (2005)CrossRefGoogle Scholar
  26. 26.
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4) (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Muffy Calder
    • 1
  • Adam Duguid
    • 2
  • Stephen Gilmore
    • 2
  • Jane Hillston
    • 2
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowScotland
  2. 2.Laboratory for Foundations of Computer ScienceThe University of EdinburghEdinburghScotland

Personalised recommendations