Deciding Behavioural Properties in Brane Calculi

  • Nadia Busi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


Brane calculi are a family of biologically inspired process calculi proposed in [5] for modeling the interactions of dynamically nested membranes and small molecules.

Building on the decidability of divergence for the fragment with mate, bud and drip operations in [1], in this paper we extend the decidability results to a broader class of properties and to larger set of interaction primitives. More precisely, we provide the decidability of divergence, control state maintainabiliy, inevitability and boundedness properties for the calculus with molecules and without the phago operation.


Normal Form Transition System Parallel Composition Internal Membrane Nest Level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busi, N., Gorrieri, R.: On the Computational Power of Brane Calculi. In: Proc. Computational Methods in System Biology 2005 (CMSB 2005). Transactions on Computational Systems Biology. LNCS. Springer, Heidelberg (to appear, 2005)Google Scholar
  2. 2.
    Busi, N.: On the computational power of the Mate/Bud/Drip Brane Calculus: interleaving vs. maximal parallelism. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Busi, N., Zavattaro, G.: On the expressive power of movement and restriction in pure mobile ambients. Theoretical Computer Science 322, 477–515 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Busi, N., Zandron, C.: Modeling and Analysis of Biological Processes by Mem (Brane) Calculi and Systems. In: Proc. Winter Simulation Conference (to appear, 2006)Google Scholar
  5. 5.
    Cardelli, L.: Brane Calculi - Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L.: Abstract Machines for System Biology. Draft (2005)Google Scholar
  7. 7.
    Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–213 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256, 63–92 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2, 236–366 (1952)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P., Zipursky, S.L., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman and Company, New York (1999)Google Scholar
  11. 11.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  13. 13.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Reisig, W.: Petri nets: An Introduction. EATCS Monographs in Computer Science. Springer, Heidelberg (1985)MATHGoogle Scholar
  16. 16.
    Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of the ACM 10, 217–255 (1963)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nadia Busi
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversitá di BolognaBolognaItaly

Personalised recommendations