Computational Model of a Central Pattern Generator

  • Enrico Cataldo
  • John H. Byrne
  • Douglas A. Baxter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the foregut during feeding. This CPG is a multifunctional circuit and generates at least two types of buccal motor patterns (BMPs), one that mediates ingestion (iBMP) and another that mediates rejection (rBMP). The present study used a computational approach to examine the ways in which an ensemble of identified cells and synaptic connections function as a CPG. Hodgkin-Huxley-type models were developed that mimicked the biophysical properties of these cells and synaptic connections. The results suggest that the currently identified ensemble of cells is inadequate to produce rhythmic neural activity and that several key elements of the CPG remain to be identified.


Spike Activity Synaptic Connection Plateau Potential Protraction Phase Stochastic Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cropper, E.C., Evans, C.G., Hurwitz, I., Jing, J., Proekt, A., Romero, A., Rosen, S.C.: Feeding Neural Networks in the Mollusc Aplysia. Neurosignals 13, 70–86 (2004)CrossRefGoogle Scholar
  2. 2.
    Elliott, C., Susswein, A.J.: Comparative Neuroethology of Feeding Control in Mollusc. J. Exp. Biol. 205, 877–896 (2002)Google Scholar
  3. 3.
    Brembs, B., Lorenzetti, F., Baxter, D.A., Byrne, J.H.: Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms. Science 296, 1706–1709 (2002)CrossRefGoogle Scholar
  4. 4.
    Church, P.J., Lloyd, P.E.: Activity of Multiple Identified Motor Neurons Recorded Intracel-lularly During Evoked Feeding-Like Motor Programs in Aplysia. J. Neurophysiol. 72, 1794–1809 (1994)Google Scholar
  5. 5.
    Kabotyanksi, E.A., Baxter, D.A., Cushman, S.J., Byrne, J.H.: Modulation of Fictive Feeing by Dopamine and Serotonin in Aplysia. J. Neurophysiol. 83, 374–392 (2000)Google Scholar
  6. 6.
    Morton, D.W., Chiel, H.J.: In Vivo Buccal Nerve Activity that Distinguishes Ingestion from Rejection Can Be Used to Predict Behavioral Transitions in Aplysia. J. Comp. Physiol. 172, 17–32 (1993a)CrossRefGoogle Scholar
  7. 7.
    Hurwitz, I., Kupfermann, I., Susswein, A.J.: Different Roles of Neurons B63 and B34 that Are Active During the Protraction Phase of Buccal Motor Programs In Aplysia Californica.. J. Neurophysiol. 78, 1305–1319 (1997)Google Scholar
  8. 8.
    Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity Patterns of the B31/32 Pattern Initiators Innervating the I2 Muscle of the Buccal Mass During Normal Feeding Movements in Aplysia Californica. J. Neurophysiol. 75, 1309–1326 (1996)Google Scholar
  9. 9.
    Morton, D.W., Chiel, H.J.: The Timing of Activity in Motor Neurons that Produce Radula Movements Distinguishes Ingestion from Rejection in Aplysia. J. Comp. Physiol. 173, 519–536 (1993b)CrossRefGoogle Scholar
  10. 10.
    Nargeot, R., Baxter, D.A., Byrne, J.H.: Contingent-Dependent Enhancement of Rhythmic Motor Programs: an in Vitro Analog of Operant Conditioning. J. Neurosci. 17, 8093–8105 (1997)Google Scholar
  11. 11.
    Nargeot, R., Baxter, D.A., Byrne, J.H.: Correlation between Activity in Neuron B52 and T- wo Features of Fictive Feeding in Aplysia. Neurosci. Lett. 328, 85–88 (2002)CrossRefGoogle Scholar
  12. 12.
    Deodhar, D., Kupfermann, I., Rosen, S.C., Weiss, K.R.: Design Constraints in Neuronal Circuits Underlying Behavior. In: Greenspan, R.J., Kyriacou, C.P. (eds.) Flexibility and Constraint in Behavioral Systems, pp. 41–52. John Wiley & Sons Ltd., New York (1993)Google Scholar
  13. 13.
    Kabotyanski, E.A., Baxter, D.A., Byrne, J.H.: Experimental and Computational Analyses of a Central Pattern Generator Underlying Aspects of Feeding Behavior of Aplysia. Netherlands J. Zool. 44, 357–373 (1994)CrossRefGoogle Scholar
  14. 14.
    Kupfermann, I., Deodhar, D., Teyke, T., Rosen, S.C., Nagahama, T., Weiss, K.R.: Behavioral Switching of Biting and of Directed Head Turning in Aplysia: Explorations Using Neural Network Models. Acta Biol. Hung. 43, 315–328 (1992)Google Scholar
  15. 15.
    Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H., Baxter, D.A.: Mechanisms Underlying Fictive Feeding in Aplysia: Coupling Between a Large Neuron with Plateau Potentials and a Spiking Neuron. J. Neurophysiol. 87, 2307–2323 (2002)Google Scholar
  16. 16.
    Ziv, I., Baxter, D.A., Byrne, J.H.: Simulator for Neural Networks and Action Potentials: Description and Application. J. Neurophysiol. 71, 294–308 (1994)Google Scholar
  17. 17.
    Av-Ron, E., Byrne, J.H., Baxter, D.A.: Teaching Basic Principles of Neuroscience with Computer Simulations. J. Undergrad. Neurosci. Edu. (in press, 2006)Google Scholar
  18. 18.
    Baxter, D.A., Byrne, J.H.: Simulator for Neural Networks and Action Potentials (SNNAP): Description and Application. In: Crasto, C. (ed.) Methods in Molecular Biology: Neuroinformatics. Humana Press, Totowa (in press, 2006)Google Scholar
  19. 19.
    Hurwitz, I., Susswein, A.J.: B64, a Newly Identified Central Pattern Generator Element Producing a Phase Switch from Protraction to Retraction in Buccal Motor Programs of Aplysia Californica. J. Neurophysiol. 75, 1327–1344 (1996)Google Scholar
  20. 20.
    Kabotyanski, E.A., Baxter, D.A., Byrne, J.H.: Identification and Characterization of Catecholaminergic Neuron B65 That Initiates And Modifies Patterned Activity in the Buccal Ganglia of Aplysia. J. Neurophysiol. 79, 605–621 (1998)Google Scholar
  21. 21.
    Bernard, C., Axelrad, H., Giraud, B.G.: Effects Of Collateral Inhibition in a Model of the Immature Rat Cerebellar Cortex: Multineuron Correlations. Brain Res. Cogn. Brain Res. 1, 100–122 (1993)CrossRefGoogle Scholar
  22. 22.
    Bhalla, U.S., Bower, J.M.: Exploring Parameter Space in Detailed Single Neuron Models: Simulations of the Mitral and Granule Cells of the Olfactory Bulb. J. Neurophysiol. 69, 1948–1965 (1993)Google Scholar
  23. 23.
    Edwards, J.A., Palsson, B.O.: Robustness Analysis of the Escherichia Coli Metabolic Network. Biotechnol. Prog. 16, 927–939 (2000)CrossRefGoogle Scholar
  24. 24.
    Arshavsky, Y.I., Deliagina, T.G., Orlovsky, G.N.: Pattern Generation. Curr. Opin. Neurobiol. 7, 781–789 (1997)CrossRefGoogle Scholar
  25. 25.
    Cropper, E.C., Weiss, K.R.: Synaptic Mechanisms in Invertebrate Pattern Generation. Curr. Opin. Neurobiol. 6, 833–841 (1996)CrossRefGoogle Scholar
  26. 26.
    Marder, E., Calabrese, R.L.: Principles of Rhythmic Motor Pattern Generation. Physiol. Rev. 76, 687–717 (1996)Google Scholar
  27. 27.
    Marder, E., Bucher, D., Schulz, D.J., Taylor, A.L.: Invertebrate Central Pattern Generation Moves Along. Current Biology 15, R685–R699 (2005)CrossRefGoogle Scholar
  28. 28.
    Stein, P.S.G., Grillner, S., Selverton, A.I., Stuart, D.G. (eds.): Neurons, Networks and Motor Behaviors. The MIT Press, Cambridge (1998)Google Scholar
  29. 29.
    Abbott, L.F., Marder, E.: Modeling Small Networks. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling: from Ions to Networks, 2nd edn., pp. 361–409. The MIT Press, Cambridge (1998)Google Scholar
  30. 30.
    Calabrese, R.L.: Oscillation in Motor Pattern-Generating Networks. Curr. Opin. Neurobiol. 5, 816–823 (1995)CrossRefGoogle Scholar
  31. 31.
    Marder, E., Abbott, L.F.: Theory in Motion. Curr. Opin. Neurobiol. 5, 832–840 (1995)CrossRefGoogle Scholar
  32. 32.
    Marder, E., Kopell, N., Sigvardt, K.: How Computation Aids in Understanding Biological Networks. In: Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.G. (eds.) Neurons, Networks, And Motor Behaviors, pp. 139–149. The MIT Press, Cambridge (1998)Google Scholar
  33. 33.
    Nargeot, R., Baxter, D.A., Byrne, J.H.: In Vitro Analogue of Operant Conditioning n Aplysia: I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron. J. Neurosci. 15, 2247–2260 (1999a)Google Scholar
  34. 34.
    Nargeot, R., Baxter, D.A., Byrne, J.H.: In Vitro Analogue of Operant Conditioning in Aplysia: II. Modifications of the Functional Dynamics of an Identified Neuron Mediate Motor Pattern Selection. J. Neurosci. 15, 2261–2272 (1999b)Google Scholar
  35. 35.
    Jing, J., Weiss, K.R.: Neural Mechanisms of Motor Program Switching in Aplysia. J. Neurosci. 15, 7349–7362 (2001)Google Scholar
  36. 36.
    Warman, E.N., Chiel, H.J.: A New Technique for Chronic Single-Unit Extracellular Recording in Freely Behaving Animals Using Pipette Electrodes. J. Neurosci. Methods 57, 161–169 (1995)CrossRefGoogle Scholar
  37. 37.
    Teyke, T., Rosen, S.C., Weiss, K.R., Kupfermann, I.: Dopaminergic Neuron B20 Gen rates Neuronal Activity in the Feeding Motor Circuitry of Aplysia. Brain Res. 630, 226–237 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Enrico Cataldo
    • 2
  • John H. Byrne
    • 1
  • Douglas A. Baxter
    • 1
  1. 1.Department of Neurobiology and AnatomyThe University of Texas Medical School at HoustonHoustonUSA
  2. 2.Department of Biology – General Physiology Unit Faculty of ScienceUniversity of PisaPisaItaly

Personalised recommendations