A Computational Model for Eukaryotic Directional Sensing

  • Andrea Gamba
  • Antonio de Candia
  • Fausto Cavalli
  • Stefano Di Talia
  • Antonio Coniglio
  • Federico Bussolino
  • Guido Serini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


Many eukaryotic cell types share the ability to migrate directionally in response to external chemoattractant gradients. This ability is central in the development of complex organisms, and is the result of billion years of evolution. Cells exposed to shallow gradients in chemoattractant concentration respond with strongly asymmetric accumulation of several signaling factors, such as phosphoinositides and enzymes. This early symmetry-breaking stage is believed to trigger effector pathways leading to cell movement. Although many factors implied in directional sensing have been recently discovered, the physical mechanism of signal amplification is not yet well understood. We have proposed that directional sensing is the consequence of a phase ordering process mediated by phosphoinositide diffusion and driven by the distribution of chemotactic signal. By studying a realistic computational model that describes enzymatic activity, recruitment to the plasmamembrane, and diffusion of phosphoinositide products we have shown that the effective enzyme-enzyme interaction induced by catalysis and diffusion introduces an instability of the system towards phase separation for realistic values of physical parameters. In this framework, large reversible amplification of shallow chemotactic gradients, selective localization of chemical factors, macroscopic response timescales, and spontaneous polarization arise.


Phase Separation Spontaneous Polarization Anisotropic Case Random Realization Average Cluster Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binder, K.: Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783–859 (1987)CrossRefGoogle Scholar
  2. 2.
    Binder, K., Heermann, D.W.: Monte Carlo Simulations in Statistical Physics. An Introduction, 4th edn. Springer, Berlin (2002)Google Scholar
  3. 3.
    Cullen, P.J., Cozier, G.E., Banting, G., Mellor, H.: Modular phosphoinositide-binding domains–their role in signalling and membrane trafficking. Curr. Biol. 11(21), R882–R893 (2001)CrossRefGoogle Scholar
  4. 4.
    Devreotes, P., Janetopoulos, C.: Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003)CrossRefGoogle Scholar
  5. 5.
    Gamba, A., de Candia, A., Di Talia, S., Coniglio, A., Bussolino, F., Serini, G.: Diffusion limited phase separation in eukaryotic chemotaxis. Proc. Nat. Acad. Sci. U.S.A. 102, 16927–16932 (2005)CrossRefGoogle Scholar
  6. 6.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  7. 7.
    Iijima, M., Huang, E.Y., Luo, H.R., Vazquez, F., Devreotes, P.N.: Novel Mechanism of PTEN Regulation by Its Phosphatidylinositol 4, 5-Bisphosphate Binding Motif Is Critical for Chemotaxis. J. Biol. Chem. 16, 16606–16613 (2004)CrossRefGoogle Scholar
  8. 8.
    Janetopoulos, C., Ma, L., Devreotes, P.N., Iglesias, P.A.: Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. U. S. A. 101(24), 8951–8956 (2004)CrossRefGoogle Scholar
  9. 9.
    Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)CrossRefGoogle Scholar
  10. 10.
    Levchenko, A., Iglesias, P.A.: Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Bioph. J. 82, 50–63 (2002)CrossRefGoogle Scholar
  11. 11.
    Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell migration: integrating signals from front to back. Science 302(5651), 1704–1709 (2003)CrossRefGoogle Scholar
  12. 12.
    Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995)CrossRefGoogle Scholar
  13. 13.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1987)Google Scholar
  14. 14.
    Van Haastert, P.J.M., Devreotes, P.N.: Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol., 626–624 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrea Gamba
    • 1
  • Antonio de Candia
    • 2
  • Fausto Cavalli
    • 3
  • Stefano Di Talia
    • 4
  • Antonio Coniglio
    • 2
  • Federico Bussolino
    • 5
  • Guido Serini
    • 5
  1. 1.Department of MathematicsPolitecnico di Torino, and INFN – Unit of TurinTorinoItalia
  2. 2.Department of Physical SciencesUniversity of Naples “Federico II” and, INFM – Unit of NaplesNapoliItalia
  3. 3.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItalia
  4. 4.Laboratory of Mathematical PhysicsThe Rockefeller UniversityNew YorkUSA
  5. 5.Department of Oncological Sciences and Division of Molecular Angiogenesis, IRCC, Institute for Cancer Research and TreatmentUniversity of Torino School of MedicineCandiolo (TO)Italia

Personalised recommendations