EAST: Energy Alignment Search Tool

  • Dariusz Mrozek
  • Bożena Małysiak
  • Stanisław Kozielski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)


The inspection of structural changes (in selected proteins’ regions) that take place in particular reactions of signal pathways is very important for their analysis. Conformational modifications as an effect of biochemical reactions or environmental influences cause changes in the conformational energy distributions. Observations of the energy characteristics allow to detect structural changes of selected proteins. In the paper, we present the EAST – method of similarity searching based on energy profiles. This method can be employed to find similar proteins during the analysis of substrates of signal paths’ reactions and to detect regions of protein structure modifications.


Protein Data Bank Energy Characteristic Energy Profile Query Protein Optimal Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ray, L.B.: The Science of Signal Transduction. Science 284, 755–756 (1999)CrossRefGoogle Scholar
  2. 2.
    Berridge, M.J.: The Molecular Basis of Communication within the Cell. Scientific American 253(4), 142–152Google Scholar
  3. 3.
    Mrozek, D., Małysiak, B., Frączek, J., Kasprowski, P.: Signal Cascades Analysis in Nano-processes with Distributed Database System. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 334–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular Cell Biology, 4th edn. W.H. Freeman, New York (2001)Google Scholar
  5. 5.
    Branden, C., Tooze, J.: Introduction to Protein Structure. Garland (1991)Google Scholar
  6. 6.
    Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. W.H. Freeman, New York (1980)Google Scholar
  7. 7.
    Brown, N.R., Noble, M.E.M., et al.: Effects of Phosphorylation of Threonine 160 on Cyclin-dependent Kinase 2 Structure and Activity. J. Biol. Chem. 274(13), 8746–8756 (1999)CrossRefGoogle Scholar
  8. 8.
    Burkert, U., Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington D.C. (1980)Google Scholar
  9. 9.
    Pearson, W.R., Lipman, D.J.: Improved Tools for Biological Sequence Analysis. PNAS 85, 2444–2448 (1988)CrossRefGoogle Scholar
  10. 10.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  11. 11.
    Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)CrossRefGoogle Scholar
  12. 12.
    Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123–138 (1993)CrossRefGoogle Scholar
  13. 13.
    Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 11(9), 739–747 (1998)CrossRefGoogle Scholar
  14. 14.
    Can, T., Wang, Y.F.: CTSS: A Robust and Efficient Method for Protein Structure Alignment Based on Local Geometrical and Biological Features. In: Proceedings of the 2003 IEEE Bioinformatics Conference (CSB ), pp. 169–179 (2003)Google Scholar
  15. 15.
    Thorner, D.A., Wild, D.J., Willett, P., Wright, P.M.: Similarity Searching in Files of Three-Dimensional Chemical Structures: Flexible Field-Based Searching of Molecular Electrostatic Potentials. J. Chem. Inf. Comput. Sci., 900–908 (1996)Google Scholar
  16. 16.
    Rodrigo, J., Barbany, M., et al.: Comparison of Biomolecules on the Basis of Molecular Interaction Potentials. J. Braz. Chem. Soc. 13(6), 795–799 (2002)CrossRefGoogle Scholar
  17. 17.
    Ji, H., Li, H., Flinspach, M., Poulos, T.L., Silverman, R.B.: Computer Modeling of Selective Regions in the Active Site of Nitric Oxide Synthases: Implication for the Design of Isoform-Selective Inhibitors. J. Med. Chem., 5700–5711 (2003)Google Scholar
  18. 18.
    GRID, version 19; Molecular Discovery Ltd. (20 A Bearkeley Street): Mayfair, London, England (2001)Google Scholar
  19. 19.
    Wallin, S., Farwer, J., Bastolla, U.: Testing Similarity Measures with continuous and discrete Protein Models. Proteins 50, 144–157 (2003)CrossRefGoogle Scholar
  20. 20.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  21. 21.
    Znamirowski, A.W., Znamirowski, L.: Two-Phase Simulation of Nascent Protein Folding. In: Proc. of the 4th IASTED Inter. Conference on Modelling, Simulation, and Optimization 2004, Kauai, Hawaii, pp. 293–298. ACTA Press (2004)Google Scholar
  22. 22.
    Znamirowski, L., Zukowska, E.D.: Simulation of Post-translational Conformations in the Ribosomal Polypeptide Synthesis. In: Proc. of the IASTED Intern. Conf. on Modelling and Simulation, Marina del Rey, California, pp. 97–102. ACTA Press (2002)Google Scholar
  23. 23.
    Ponder, J.: TINKER – Software Tools for Molecular Design, Dept. of Biochemistry & Molecular Biophysics, Washington University, School of Medicine, St. Louis (2001)Google Scholar
  24. 24.
    Cornell, W.D., Cieplak, P., et al.: A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  25. 25.
    Smith, T.F., Waterman, M.S.: Identification of common molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  26. 26.
    Sayle, R., Milner-White, E.J.: RasMol: Biomolecular graphics for all. Trends in Biochemical Sciences (TIBS) 20(9), 374 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dariusz Mrozek
    • 1
  • Bożena Małysiak
    • 1
  • Stanisław Kozielski
    • 1
  1. 1.Department of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations