Advertisement

Fuzzy Topological Relations Between Fuzzy Spatial Objects

  • Xinming Tang
  • Yu Fang
  • Wolfgang Kainz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)

Abstract

Fuzziness is an internal property of spatial objects. How to model fuzziness of a spatial object is a main task of next generation GIS. This paper proposes basic fuzzy spatial object types based on fuzzy topology. These object types are the natural extension of current non-fuzzy spatial object types. A fuzzy cell complex structure is defined for modeling fuzzy regions, lines and points. Furthermore, fuzzy topological relations between these fuzzy spatial objects are formalized based on the 9-intersection approach. This model can be implemented for GIS applications due to its scientific theory basis.

Keywords

Cell Complex Spatial Object Topological Relation Lower Semicontinuous Mapping Fuzzy Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrough, P.A.: Natural Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 1–8. Taylor & Francis, London (1996)Google Scholar
  2. 2.
    Chang, C.L.: Fuzzy Topological Space. Journal of Mathematical Analysis and Applications 24, 182–190 (1968)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cheng, T., Molenaar, M., Bouloucos, T.: Identification of Fuzzy Objects from Field Objects. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 241–259. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Cheng, T., Molenaar, M., Lin, H.: Formalizing Fuzzy Objects from Uncertain Classification Results. International Journal of Geographical Information Science 15(1), 27–42 (2001)CrossRefGoogle Scholar
  5. 5.
    Clementini, E., Di Felice, P.: An Algebraic Model for Spatial Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 155–169. Taylor & Francis, London (1996)Google Scholar
  6. 6.
    Cohn, A.G., Gotts, N.M.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 171–187. Taylor & Francis, London (1996)Google Scholar
  7. 7.
    Egenhofer, M.J., Franzosa, R.: Point-set Topological Spatial Relations. International Journal of Geographic Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  8. 8.
    Egenhofer, M.J., Sharma, J.: Assessing the Consistency of Complete and Incomplete Topological Information. Geographic Systems 1, 47–68 (1993)MATHGoogle Scholar
  9. 9.
    Fisher, P.: Boolean and Fuzzy Region. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 87–94. Taylor & Francis, London (1996)Google Scholar
  10. 10.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, London (2002)MATHGoogle Scholar
  11. 11.
    Liu, Y.M., Luo, M.K.: Fuzzy Topology. World Scientific, Singapore (1997)MATHGoogle Scholar
  12. 12.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, California (1984)MATHGoogle Scholar
  13. 13.
    Schneider, M.: Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 330–351. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Tang, X.M., Kainz, W.: Analysis of Topological Relations between Fuzzy Regions in General Fuzzy Topological Space. In: The Proceedings of Canadian Geomatics Conference, Ottawa, Canada, pp. 114–129 (2002)Google Scholar
  15. 15.
    Tang, X.M., Kainz, W., Fang, Y.: Reasoning about Changes of Land Cover Objects with Fuzzy Settings. International Journal of Remote Sensing 26(14), 3025–3046 (2005)CrossRefGoogle Scholar
  16. 16.
    Tang, X.M., Fang, Y., Kainz, W.: Topological Relations between Fuzzy Regions in a Special Fuzzy Topological Space. Geography and Geo-information Science (in Chinese) 19(2), 1–10 (2003)MATHGoogle Scholar
  17. 17.
    Tang, X.M., Fang, Y., Kainz, W.: Topological Matrices for Topological Relations between Fuzzy Regions. In: The Proceedings of the 4th International Symposium on Multispectral Image Processing and Pattern Recognition (SPIE), Wuhan, China (2005)Google Scholar
  18. 18.
    Tang, X.M., Kainz, W., Fang, Y.: Modeling of Fuzzy Spatial Objects and their Topological Relations. In: Shi, W.Z., Goodchild, M.F., Fisher, P. (eds.) Proceedings of the 2nd Symposium on Spatial Data Quality (SDQ), Hong Kong, pp. 34–50 (2003)Google Scholar
  19. 19.
    Warren, H.R.: Boundary of a Fuzzy Set. Indiana University Mathematics Journal 26(2), 191–197 (1977)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wong, C.K.: Fuzzy Points and Local Properties of Fuzzy Topology. Journal of Mathematical Analysis and Applications 46, 316–328 (1974)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xinming Tang
    • 1
  • Yu Fang
    • 2
  • Wolfgang Kainz
    • 3
  1. 1.Key Laboratory of Geo-informatics of State Bureau of Surveying and MappingChinese Academy of Surveying and MappingBeijingChina
  2. 2.Institute of Remote Sensing and Geographic Information SystemPeking UniversityBeijingChina
  3. 3.Cartography and Geoinformation, Department of Geography and Regional ResearchUniversity of ViennaViennaAustria

Personalised recommendations