Advertisement

Concept Lattice and AFS Algebra

  • Lishi Zhang
  • Xiaodong Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)

Abstract

Formal concept analysis is a field of applied mathematics based on mathematical analysis of concept and conceptual hierarchy,AFS algebra was first proposed and studied by Xiaodong Liu 1998 ( Journal of Mathematical Analysis and Applications, vol. 217, Fuzzy Sets and Systems, vol. 95 )[1,2]. In this paper, we explore the relationships between concept lattices, the AFS algebra, we analyze concept from the point of AFS algebra , We pave a way to explore concept lattice with AFS theory.

Keywords

Concept Lattice Fuzzy Decision Formal Concept Analysis Conceptual Hierarchy Fuzzy Decision Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, X.: The Fuzzy Theory Based on AFS Algebras and AFS Structure. Journal of Mathematical Analysis and Applications 217, 459–478 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Liu, X.: The Topology on AFS Algebra and AFS Structure. Journal of Mathematical Analysis and Applications 217, 479–489 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liu, X.: A New Mathematical Axiomatic System of Fuzzy Sets and Systems. Journal of Fuzzy Mathematics 3, 559–560 (1995)MATHMathSciNetGoogle Scholar
  4. 4.
    Liu, X.: The Fuzzy Sets and Systems Based on AFS Structure, EI Algebra and EII algebra. Fuzzy Sets and Systems 95, 179–188 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Liu, X., Wang, W., Chai, T.: The Fuzzy Clustering Analysis Based on AFS Theory. IEEE Transactions on Systems, Man and Cybernetics Part B 35(5), 1013–1027 (2005)CrossRefGoogle Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)MATHGoogle Scholar
  7. 7.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, T.: Efficient mining of association rules using closed itemset lattices. Inform. Systems 24(1), 25–46 (1999)CrossRefGoogle Scholar
  8. 8.
    Liu, X., Liu, W.: Credit Rating Analysis with AFS Fuzzy Logic. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1198–1204. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Mineau, G.W., Godin, R.: Automatic structureing of knowledge bases by conceptual clustering. IEEE Trans. knowledge Data Eng. 7(5), 824–828 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ivan Rival, R. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordecht (1982)Google Scholar
  11. 11.
    Stumme, G., Wille, R. (eds.): Begriffliche Wissensverarbeitung-—Methoden und An-wendungen. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications 23, 493–515 (1992)MATHCrossRefGoogle Scholar
  13. 13.
    Liu, X., Zhang, L., Jun, Z., Zhu, K., Zhang, Q.: The Structures of EI Algebras Generated by Information Attributes. Int. J. Intelligent Systems Technologies and Applications (in press) Google Scholar
  14. 14.
    Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of class hierarchies based on concept Galois lattices. TAPOS 4(2), 117–134 (1998)Google Scholar
  15. 15.
    Liu, X., Pedrycz, W.: The Development of Fuzzy Decision Tree in the Framework of Axiomatic Fuzzy Set Logic. Applied Soft Computing (accepted, 2005) available online Google Scholar
  16. 16.
    Vogt, F., Wille, R.: TOSCANA-—A graphical tool for analyzing and exploring data. In: Tamassia, R., Tollis, I(Y.) G. (eds.) GD 1994. LNCS, vol. 894, pp. 226–233. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Liu, X., Zhang, Q.: The Fuzzy Cognitive Maps Based on AFS Fuzzy Logic, Dynamics of Continuous. Discrete and Impulsive Systems 11(5-6), 787–796 (2004)MATHGoogle Scholar
  18. 18.
    Liu, X., Chai, T., Wang, W.: AFS Fuzzy Logic Systems and Its Applicationsto Model and Control. International Journal of Information and Systems Sciences 2(3), 1–21 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lishi Zhang
    • 1
    • 2
  • Xiaodong Liu
    • 1
  1. 1.Research Center of Information and ControlDalian University of TechnologyDalianP.R. China
  2. 2.School of ScienceDalian Fisheries CollegeDalianP.R. China

Personalised recommendations