Robust H ∞  Fuzzy Controller for Uncertain Nonlinear Systems with Time-Varying Delayed State

  • Taek Ryong Kim
  • Jin Bae Park
  • Young Hoon Joo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)


This paper addresses a robust H  ∞  stabilization problem to uncertain nonlinear systems with time-varying delayed state via fuzzy static output feedback. We employ the Takagi–Sugeno (T–S) fuzzy model to represent the nonlinear system in both continuous-time and discrete-time cases. Sufficient conditions, which are in the format of bilinear matrix inequalities (BMI)s, are derived for robust stabilization and disturbance attenuation of the closed-loop fuzzy control system in both cases. Then, the BMIs are converted to linear matrix inequalities (LMI)s through some manipulations. The effectiveness of the proposed controller design methodology is demonstrated through a numerical simulation.


Linear Matrix Inequality Fuzzy Model Fuzzy Controller Uncertain Nonlinear System Fuzzy Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joo, Y.H., Shieh, L.S., Chen, G.: Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems. IEEE Trans. Fuzzy Syst. 7(4), 394–408 (1999)CrossRefGoogle Scholar
  2. 2.
    Chang, W., Park, J.B., Joo, Y.H., Chen, G.: Design of sampled-data fuzzy-model-based control systems by using intelligent digital redesign. IEEE Trans. Circuits Syst.-I 49(4), 509–517 (2002)CrossRefGoogle Scholar
  3. 3.
    Lee, H.J., Joo, Y.H., Chang, W., Park, J.B.: A new intelligent digital redesign for TS fuzzy systems: Global approach. IEEE Trans. Fuzzy Syst. 12(2), 274–284 (2004)CrossRefGoogle Scholar
  4. 4.
    Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via an LMI-based fuzzy control system design. IEEE Trans. Circuits Syst.-I 45(10), 1021–1040 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chang, Y.C., Chen, S.S., Su, S.F., Lee, T.T.: Static output feedback stabilization for nonlinear interval time-delay systems via fuzzy control approach. Fuzzy Sets Syst. 54(6) (2004)Google Scholar
  6. 6.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. SMC-15(1), 116–132 (1985)Google Scholar
  7. 7.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  8. 8.
    Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lo, J.C., Lin, M.L.: Robust H  ∞  nonlinear control via fuzzy static output feedback. IEEE Trans. Circuits Syst. I 50(11), 1494–1502 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cao, Y.Y., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)CrossRefGoogle Scholar
  11. 11.
    Lee, K.R., Kim, J.H., Jeung, E.T., Park, H.B.: Output feedback robust H  ∞  control of uncertain fuzzy dynamic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 8(6), 657–664 (2000)CrossRefGoogle Scholar
  12. 12.
    Hao, F., Chu, T., Huang, L., Wang, L.: Non-fragile controllers of peak gain minimization for uncertain systems via LMI approach. Dynamics of Continuous Discrete and Impulsive Systems 10(5), 681–693 (2003)MATHMathSciNetGoogle Scholar
  13. 13.
    Xu, S., Lam, J.: Robust H  ∞  Control for Uncertain Discrete-Time-Delay Fuzzy Systems Via Output Feedback Controllers. IEEE Trans. Fuzzy Syst. 13(1), 82–93 (2005)CrossRefGoogle Scholar
  14. 14.
    Lee, H.J., Park, J.B., Chen, G.: Robust fuzzy control of nonlinear systems with parametric uncertainties. IEEE Trans. Fuzzy Syst. 9(2), 369–379 (2001)CrossRefGoogle Scholar
  15. 15.
    Tuan, H.D., Apkarain, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  16. 16.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control theory. SIAM, Philadelphia (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Taek Ryong Kim
    • 1
  • Jin Bae Park
    • 1
  • Young Hoon Joo
    • 2
  1. 1.Yonsei UniversitySeodaemun-gu, SeoulKorea
  2. 2.Kunsan National UniversityKunsan, ChunbukKorea

Personalised recommendations