Location-Aware Data Mining for Mobile Users Based on Neuro-fuzzy System

  • Romeo Mark A. Mateo
  • Marley Lee
  • Su-Chong Joo
  • Jaewan Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)


Data mining tools generally deal with highly structured and precise data. However, classical methods fail to handle imprecise or uncertain information. This paper proposes a neuro-fuzzy data mining approach which provides a means to deal with the uncertainty of data. This presents a location-based service collaboration framework and uses the neuro-fuzzy algorithm for data mining. It also introduces the user-profile frequency count (UFC) function to determine the relevance of the information to mobile users. The result of using neuro-fuzzy system provides comprehensive and highly accurate rules.


Data Mining Location Information Fuzzy Rule Mobile User Mobile Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schiller, J., Voisard, A.: Location-Based Services, pp. 10–15. Morgan Kaufmann Publishers, Elveiser Inc. (2004)Google Scholar
  2. 2.
    Patterson, C., Muntz, R., Pancake, C.: Challenges in Location-Aware Computing. IEEE Pervasive Computing 2(2), 80–89 (2003)CrossRefGoogle Scholar
  3. 3.
    Yavas, G., Katsaros, D., Ulusoy, O., Manolopoulos, Y.: A Data Mining Approach for Location Prediction in Mobile Environments. Data & Knowledge Engineering 54, 121–146 (2005)CrossRefGoogle Scholar
  4. 4.
    Lee, J.W., Mateo, R.M., Gerardo, B.D., Go, S.: Location-aware Agent using Data mining for the Distributed Location-based Services. LNCS Vol. 3894, Glasgow, Scotland, U.K, pp. 867-876 (May 2006)Google Scholar
  5. 5.
    Dumitrescu, D., Lazzerini, B., Jain, L.C.: Fuzzy Sets and Their Application to Clustering and Training. The CRC Press International Series on Computer Intelligence. CRC Press LLC, Boca Raton (2000)Google Scholar
  6. 6.
    Kruse, R., Bolgelt, C., Nauck, D.: Fuzzy Data Analysis: Challenges and Perspectives. In: Proceedings of the 8th IEEE International Conference on Fuzzy Systems. IEEE Press, Piscataway (1999)Google Scholar
  7. 7.
    Mendes Rodrigues, M.E.S., Sacks, L.: A Scalable Hierarchical Fuzzy Clustering Algorithm for Text Mining. In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing, Nottingham, U. K. (December 2004)Google Scholar
  8. 8.
    Ko, J., Gerardo, B.D., Lee, J.W., Hwang, J.: The Information Search System Using Neural Network and Fuzzy Clustering Based on Mobile Agent. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 205–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Yi, S., Gerardo, B.D., Lee, Y.S., Lee, J.W.: Intelligent Information Search Mechanism using Filtering and NFC based on Multi-agents. In: The Distributed Environment. LNCS, vol. 3982, pp. 867–876. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Klose, A., Nürnberger, A., Nauck, D., Kruse, R.: Data Mining with Neuro-Fuzzy Models. In: Data Mining and Computational Intelligence, pp. 1–36. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Nauck, D., Kruse, R.: NEFCLASS - A Neuro-Fuzzy Approach for the Classification of Data. In: Proceedings of ACM Symposium on Applied Computing, Nashville (1995)Google Scholar
  12. 12.
    Huang, Y.P., Chuang, W.P.: Improving the Museum’s Service by Data Mining and Location-aware Approach. In: Proceedings of Systems, Man and Cybernetics (2004)Google Scholar
  13. 13.
    Bellavista, P., Corradi, A., Stenfalli, S.: Mobile Agent Middleware for Mobile Computing. Computer Journal, 73–81 (March 2001)Google Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy Sets. Information and Control, 338–353 (1965)Google Scholar
  15. 15.
    Mitra, S., Hayashi, Y.: Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework. IEEE Trans. Neural Networks 11, 748–768 (2000)CrossRefGoogle Scholar
  16. 16.
    Halgamuge, S.K., Glesner, M.: Neural Networks in Designing Fuzzy Systems for Real World Applications. Fuzzy Sets and Systems 65, 1–12 (1994)CrossRefGoogle Scholar
  17. 17.
    Wai, R.J., Chen, P.C.: Intelligent Tracking Control for Robot Manipulator Including Actuator Dynamics via TSK-type Fuzzy Neural Network. IEEE Trans. Fuzzy Systems 12, 552–560 (2004)CrossRefGoogle Scholar
  18. 18.
    Banerjee, M., Mitra, S., Pal, S.K.: Rough Fuzzy MLP: Knowledge Encoding and Classification. IEEE Trans. Neural Networks 9, 1203–1216 (1998)CrossRefGoogle Scholar
  19. 19.
    Felber, P., Guerraoui, R., Schiper, A.: Evaluating CORBA Portability: The Case of an Object Group Service. In: Proceedings of the Second International Enterprise Distributed Object Computing Workshop, pp. 164–173 (1998)Google Scholar
  20. 20.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, ACM Press, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Romeo Mark A. Mateo
    • 1
  • Marley Lee
    • 2
  • Su-Chong Joo
    • 3
  • Jaewan Lee
    • 1
  1. 1.School of Electronic and Information EngineeringKunsan National UniversityKunsan, ChonbukSouth Korea
  2. 2.School of Electronic and Information EngineeringChonbuk National UniversityJeonju, ChonbukSouth Korea
  3. 3.School of Electrical, Electronic and Information EngineeringWonkwang UniversitySouth Korea

Personalised recommendations