Advertisement

Prediction of MHC Class I Binding Peptides Using Fourier Analysis and Support Vector Machine

  • Feng Shi
  • Qiujian Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)

Abstract

Processing and presentation of major histocompatibility complex class I antigens to cytotoxic T-lymphocytes is crucial for immune surveillance against intracellular bacteria, parasites, viruses and tumors. Identification of antigenic regions on pathogen proteins will play a pivotal role in designer vaccine immunotherapy. We have developed a novel method that identifies MHC class I binding peptides from peptides sequences. For the first time we present a method for MHC class I binding peptides prediction using Fourier analysis and support vector machines (SVM). Using cross-validation, we demonstrate that this novel prediction technique has a reasonable performance.

Keywords

Support Vector Machine Major Histocompatibility Complex Class Binding Peptide Support Vector Machine Training Anchor Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldi, P., Brunak, S.: Bioinformatics, the machine learning approach. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Brusic., V., Rudy, G., Harrison, L.C.: Prediction of MHC binding peptides using artificial neural networks. In: Stonier, R.J., Yu, X.S. (eds.) Complex Systems: Mechanism of Adaptation, pp. 253–260. IOS Press, Amsterdam (1994)Google Scholar
  3. 3.
    Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res. 26, 368–371 (1998)CrossRefGoogle Scholar
  4. 4.
    Buus, S., Lauemoller, S.L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A., Hilden, J., Holm, A., Brunak, S.: Sensitive quantitative predictions of peptide-MHC binding by a ’Query by Committee’ artificial neural network approach. Tissue Antigens 62, 378–384 (2003)CrossRefGoogle Scholar
  5. 5.
    Castellino, F., Zhong, G., Germain, R.N.: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum. Immunol. 54, 159–169 (1997)CrossRefGoogle Scholar
  6. 6.
    Dawn, C., Purnima, G., Eoin, F., Shankar, S.: MitoProteome: Mitochondrial Protein Sequence Database and Annotation System. Nucleic Acids Research 32, 463–467 (2004)CrossRefGoogle Scholar
  7. 7.
    Dönnes, P., Elofsson, A.: Prediction of MHC I binding peptides, using SVMHC. BMC Bioinformatics 3, 1–8 (2002)CrossRefGoogle Scholar
  8. 8.
    Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358 (1987)CrossRefGoogle Scholar
  9. 9.
    Gulukota, K., Sidney, J., Sette, A., DeLisi, C.: Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267, 1258–1267 (1997)CrossRefGoogle Scholar
  10. 10.
    Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Res. 28, 374 (1999)CrossRefGoogle Scholar
  11. 11.
    Mamitsuka, H.: MHC molecules using supervised learning of hidden Markov models. Proteins: Structure, Function and Genetics 33, 460–474 (1998)CrossRefGoogle Scholar
  12. 12.
    Matthews, B.: Comparison of the predicted and observer secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta. 405, 442–451 (1975)Google Scholar
  13. 13.
    Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class and class epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)CrossRefGoogle Scholar
  14. 14.
    Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S.L., Lamberth, K., Buus, S., Lund, O.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representation. Protein Sci. 12, 1007–1017 (2003)CrossRefGoogle Scholar
  15. 15.
    Parker, K.C., Bednarek, M.A., Coligan, J.E.: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994)Google Scholar
  16. 16.
    Rammensee, H.G., Friede, T., Stevanovic, S.: MHC ligands and peptide motifs: first listing. Immunogenetics 41, 962–965 (1995)CrossRefGoogle Scholar
  17. 17.
    Rammensee, H.G., Bachmann, J., Emmerich, N.P., Bachor, O.A., Stevanovic, S.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)CrossRefGoogle Scholar
  18. 18.
    Rotzschke, O., Falk, K., Stevanovic, S., Jung, G., Rammensee, H.G.: Peptide motifs of closely related HLA class I molecules encompass substantial differences. European Journal of Immunology 22, 2453–2456 (1992)CrossRefGoogle Scholar
  19. 19.
    Schueler-Furman, O., Altuvia, Y., Sette, A.: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Science 9, 1838–1846 (2000)CrossRefGoogle Scholar
  20. 20.
    Sette, A., Adorini, L., Colon, S.M., Buus, S., Grey, H.M.: Capacity of intact proteins to bind to MHC class II molecules. J. Immuno. 143, 1265–1267 (1989)Google Scholar
  21. 21.
    Shepherd, A.J., Gorse, D., Thornton, J.M.: Novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks. Proteins: Structure, Function, and Genetics 50, 290–302 (2003)CrossRefGoogle Scholar
  22. 22.
    Srinivasan, K.N., Zhang, G.L., Khan, A.M., August, J.T., Brusic, V.: Rediction of calss I T-cell epitopes:evidence os presence of immunogical hot spots inside antigens. Bioinformatics 20(suppl. 1), 297–302 (2004)CrossRefGoogle Scholar
  23. 23.
    Swet, J.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)MATHGoogle Scholar
  25. 25.
    Yewdell, J., Bennink, J.: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17, 51–81 (1999)CrossRefGoogle Scholar
  26. 26.
    ZhaoY., D., Pinilla, C., Valmori, D., Martin, R., Simon, R.: Application of Support vector machines for T-cell epitopes prediction. Bioinformatics 19, 1978–1984 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Feng Shi
    • 1
    • 2
  • Qiujian Chen
    • 1
  1. 1.College of ScienceHuazhong Agricultural UniversityWuhanP.R. China
  2. 2.School of Mathematics and StatisticsWuhan UniversityWuhanP.R. China

Personalised recommendations