On the Society of Genome: Social Affiliation Network Analysis of Microarray Data

  • Jung Hun Ohn
  • Jihoon Kim
  • Ju Han Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)


To investigate the structure of the genomic interaction network built from yeast gene-expression compendium dataset of hundreds of systematic perturbations, social affiliation network analysis methodologies were applied through quantifying various density, closeness and centrality measures and exploring core-periphery structures. Genes affected by a larger number of perturbations were found to be involved in responses to various environmental challenges. Deletion of essential genes was suggested to cause larger number of genes to be significantly up or down regulated. We explored the network structure made up of several sub-networks using core-periphery models to find ancient pathways. Glycolysis and TCA cycle have relatively core positions in the energy-related processes of yeast.


Social Network Analysis Betweenness Centrality Centralization Index Molecular Phenotype Yeast Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Scott, J.: Social Network Analysis. SAGE publications, Thousand Oaks (2000)Google Scholar
  3. 3.
    Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)CrossRefGoogle Scholar
  4. 4.
    Cohen, B.A., Pilpel, Y., Mitra, R.D., Church, G.M.: Discrimination between Paralogs using Microarray Analysis: Application to the Yap1p and Yap2p Transcriptional Networks. Mol. Biol. Cell 13(5), 1608–1614 (2002)CrossRefGoogle Scholar
  5. 5.
    Rung, J., Schlitt, T., Brazma, A., Freivalds, K., Vilo, J.: Building and analysing genome-wide gene disruption networks. Bioinformatics suppl. 2, 202–210 (2002)Google Scholar
  6. 6.
    Asch, J., Rindone, W., Church, G.M.: Systematic management and analysis of yeast gene expression data. Genome Research 10, 431–445 (2000)CrossRefGoogle Scholar
  7. 7.
    Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular organization in the yeast transcriptional network. Nature Genetics 31, 370–377 (2002)Google Scholar
  8. 8.
    Faust, K.: Centrality in affiliation networks. Social Networks 19, 157–191 (1997)CrossRefGoogle Scholar
  9. 9.
    Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data. Social Networks 19, 243–269 (1997)CrossRefGoogle Scholar
  10. 10.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network Analysis, Harvard Analytic Technologies USA (2002)Google Scholar
  11. 11.
    Freeman, L.C.: Centrality in social networks. Social Networks 1, 215–239 (1979)CrossRefGoogle Scholar
  12. 12.
    Borgatti, S.P., Everett, M.G.: Models of Core/Periphery Structures. Social Networks 21, 375–395 (1999)CrossRefGoogle Scholar
  13. 13.
    Mewes, H.W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B., Munsterkotter, M., Rudd, S., Weil, B.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002)CrossRefGoogle Scholar
  14. 14.
    Featherstone, D.E., Broadie, K.: Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. BioEssays 24, 267–274 (2002)CrossRefGoogle Scholar
  15. 15.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRefGoogle Scholar
  16. 16.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. 268, 1803–1810 (2001)CrossRefGoogle Scholar
  17. 17.
    Przybyla-Zawislak, B., Gadde, D.M., Ducharme, K., McCammon, M.T.: Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152(1), 153–166 (1999)Google Scholar
  18. 18.
    Barabasi, A.L., Oltvai, Z.N.: Network Biology: Understanding the cell’s functional organization. Nature genetics 5, 101–113 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jung Hun Ohn
    • 1
  • Jihoon Kim
    • 1
  • Ju Han Kim
    • 1
    • 2
  1. 1.Seoul National University Biomedical Informatics (SNUBI) 
  2. 2.Human Genome Research InstituteSeoul National University College of MedicineSeoulKorea

Personalised recommendations