Feature-Oriented Fuzzy Shock-Diffusion Equation for Adaptive Image Resolution Enhancement

  • Shujun Fu
  • Qiuqi Ruan
  • Wenqia Wang
  • Jingnian Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)


Image resolution enhancement is receiving a great deal of attention in the wide increasing use of digital imaging technologies recently. This paper presents a feature-oriented fuzzy shock-diffusion equation, where the shock term is used to sharpen edges along the normal direction to the isophote line (edge), while the diffusion term is used to remove artifacts (“jaggies”) along the tangent direction. A fuzzy decision mechanism is used to preserve image features such as edge, texture and fine part. Finally, a shock capturing scheme with a special limiter function is developed to speed the process with numerical stability. Experimental results on real images demonstrate that our algorithm substantially improves the subjective quality of the enhanced images over conventional interpolations and some related equations.


Anisotropic Diffusion Image Interpolation Good Visual Quality Anisotropic Diffusion Filter Digital Imaging Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castleman, K.R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1995)Google Scholar
  2. 2.
    Jensen, K., Anastassiou, D.: Subpixel edge localization and the interpolation of still images. IEEE Trans. on Image Processing 4(3), 285–295 (1995)CrossRefGoogle Scholar
  3. 3.
    Allebach, J., Wong, P.W.: Edge-directed interpolation. In: Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 707–710 (1996)Google Scholar
  4. 4.
    Battiato, S., Gallo, G., Stanco, F.: A locally adaptive zooming algorithm for digital images. Image Vision and Computing 20, 805–812 (2002)CrossRefGoogle Scholar
  5. 5.
    Xin, L., Orchard, M.T.: New Edge-Directed Interpolation. IEEE Transactions on image processing 10(10), 1521–1527 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhu, C.-Q., Wang, Q., et al.: Image Magnification Based on Multi-Band Wavelet Transformation. China Journal of Image and Graphics 7(A) (3), 653–656 (2003)Google Scholar
  7. 7.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. In: Applied Mathematical Sciences, vol. 147, Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  9. 9.
    You, Y.L., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. on Image Processing 5(11), 1539–1553 (1996)CrossRefGoogle Scholar
  10. 10.
    Osher, S.J., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)MATHCrossRefGoogle Scholar
  11. 11.
    Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tizhoosh Hamid, R.: Fuzzy Image Processing: Introduction in Theory and Applications. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Chen, W.F., Lu, X.Q., Chen, J.J., Wu, G.X.: A new algorithm of edge detection for color image: Generalized fuzzy operator. Science in China (Series A) 38(10), 1272–1280 (1995)Google Scholar
  14. 14.
    Morse, B.S., Schwartzwald, D.: Image magnification using level-set reconstruction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 333–340 (2001)Google Scholar
  15. 15.
    Liu, R.X., Shu, Q.W.: Some new methods in Computing Fluid Dynamics. Science Press of China, Beijing (2004)Google Scholar
  16. 16.
    Muresan, D.D., Parks Thomas, W.: Adaptively quadratic (aqua) image interpolation. IEEE Transactions on Image Processing 13(5), 690–698 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shujun Fu
    • 1
    • 2
  • Qiuqi Ruan
    • 2
  • Wenqia Wang
    • 1
  • Jingnian Chen
    • 3
  1. 1.School of Mathematics and System SciencesShandong UniversityJinanChina
  2. 2.Institute of Information ScienceBeijing Jiaotong UniversityBeijingChina
  3. 3.School of Arts and ScienceShandong University of FinanceJinanChina

Personalised recommendations