Advertisement

Tracking Control of a Nonholonomic Mobile Robot Using a Fuzzy-Based Approach

  • An-Min Zou
  • Zeng-Guang Hou
  • Min Tan
  • Zeng-Shun Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4223)

Abstract

This paper investigates the tracking problem of nonholonomic mobile robots. A control structure combining a kinematic controller and a dynamic controller based on nonlinear feedback control plus fuzzy compensator is presented. The fuzzy compensator, whose parameters are tuned on-line, is employed to approximate the total uncertainty including the structured and unstructured uncertainties due to the universal approximation property of fuzzy logic systems. The stability of the proposed approach is guaranteed by the Lyapunov theory. Simulation results show the efficiency of the proposed approach.

Keywords

Mobile Robot Nonholonomic System Fuzzy Logic System Dynamic Controller Wavelet Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot Using Neural Networks. IEEE Transactions on Neural Networks 9(4), 589–600 (1998)CrossRefGoogle Scholar
  2. 2.
    de Sousa Jr., C., Hemerly, E.M., Galvao, R.K.H.: Adaptive Control for Mobile Robot Using Wavelet Networks. IEEE Transactions on Systems, Man and Cybernetics, Part B 32(4), 493–504 (2002)CrossRefGoogle Scholar
  3. 3.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive Tracking Control of a Nonholonomic Mobile Robot. IEEE Transactions on Robotics and Automation 16(5), 609–615 (2000)CrossRefGoogle Scholar
  4. 4.
    Wang, L.X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1163–1170 (1992)Google Scholar
  5. 5.
    Wang, L.X., Mendel, J.M.: Fuzzy Basis Function, Universal Approximation, and Orthogonal Least-Squares Learning. IEEE Transactions on Neural Networks 3(5), 807–814 (1992)CrossRefGoogle Scholar
  6. 6.
    Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A Stable Tracking Control Method for an Autonomous Mobile Robot. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 384–389 (1990)Google Scholar
  7. 7.
    LaSalle, J.P.: Some Extensions of Lyapunov’s Second Method. IRE Transactions Circuit Theory 7(4), 520–527 (1960)MathSciNetGoogle Scholar
  8. 8.
    Chan, P.T., Rad, A.B., Wang, J.: Indirect Adaptive Fuzzy Sliding Mode Control: Part II: Parameter Projection and Supervisory Control. Fuzzy Sets and Systems 122(1), 31–43 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • An-Min Zou
    • 1
  • Zeng-Guang Hou
    • 1
  • Min Tan
    • 1
  • Zeng-Shun Zhao
    • 1
  1. 1.Laboratory of Complex Systems and Intelligence Science, Institute of AutomationThe Chinese Academy of SciencesBeijingChina

Personalised recommendations