Geometrical Fitting of Missing Data for Shape from Motion Under Noise Distribution

  • Sungshik Koh
  • Chung Hwa Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


When converting image sequence to 3D, several entries of the matrix have not been observed by occlusions and other entries have been perturbed by the influence of noise. In this paper, we propose a method for fitting geometrically missing data in noisy observation matrix with iterative SVD factorization. The main idea of the proposed algorithm is that the orientation and distance of noisy vector ca be handled directly by geometrical properties between 2D image plane and 3D error space under noise distribution. To confirm the recoverability of missing data, we carry out the experiments for synthetic and real sequences. The results in practical situations demonstrated with synthetic and real video sequences verify the efficiency and flexibility of the proposed method.


Image Frame Reconstruction Space Observation Matrix Error Space Geometrical Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fehn, C., Kauff, P., Op de Beeck, M., Ernst, F., Jsselsteijn, W.I., Polleys, M., Van Gool, L., Ofek, E., Sexton, I.: An Evolutionary and Optimized Approach on 3D-TV. In: Proc. IBC 2002, pp. 357–365 (2002)Google Scholar
  2. 2.
    op de Beeck, M., Wilinski, P., Fehn, C., Kauff, P., Jsselsteijn, W.I., Polleys, M., Van Gool, L., Ofek, E., Sexton, I.: Towards an Optimized 3D Broadcast Chain. In: Proc. SPIE ITCom 2002, pp. 357–365 (2002)Google Scholar
  3. 3.
    Tomasi, Kanade, T.: Shape and motion from image streams under orthography: A factorization method. Int. J. of Computer Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
  4. 4.
    Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Proc. ECCV, Cambridge, UK, vol. 2, pp. 709–720 (1996)Google Scholar
  5. 5.
    Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. on PAMI 19(3), 206–218 (1997)Google Scholar
  6. 6.
    Morita, T., Kanade, T.: A sequential factorization method for recovering shape and motion from image streams. IEEE Trans. on PAMI 19(8), 858–867 (1997)Google Scholar
  7. 7.
    Aguiar, P.M.Q., Moura, J.M.F.: Rank 1 Weighted Factorization for 3D Structure Recovery: Algorithms and Performance Analysis. IEEE Trans. on PAMI 25(9), 1134–1149 (2003)Google Scholar
  8. 8.
    Irani, M., Anandan, P.: Factorization with uncertainty. In: Proc. ECCV, Dublin, Ireland, pp. 539–553 (2000)Google Scholar
  9. 9.
    Shapiro, L.: Affine Analysis of Image Sequences. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Quan, L., Kanade, T.: A factorization method for affine structure from line correspondences. In: Proc. IEEE CVPR, San Francisco CA, USA, pp. 803–808 (1996)Google Scholar
  11. 11.
    Morris, D., Kanade, T.: A unified factorization algorithm for points, line segments and planes with uncertainty models. In: Proc. IEEE ICCV, pp. 696–702 (1998)Google Scholar
  12. 12.
    Aguiar, P.M.Q., Moura, J.M.F.: Three-dimensional modeling from two dimensional video. IEEE Trans. on Image Processing 10(10), 1544–1551 (2001)CrossRefGoogle Scholar
  13. 13.
    Jacobs, D.: Linear fitting with missing data for structure-from-motion. In: Proc. CVIU, vol. 82, pp. 57–81 (2001)Google Scholar
  14. 14.
    Rui, F.C., Guerreiro, P.M.Q.: Aguiar: Estimation of Rank Deficient Matrices from Partial Observations: Two-Step Iterative Algorithms. In: Proc. EMMCVPR, pp. 450–466 (2003)Google Scholar
  15. 15.
    Sun, Z., Ramesh, V., Murat Tekalp, A.: Error characterization of the factorization method. Computer Vision and Image Understanding 82, 110–137 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Daniilidis, K., Spetsakis, M.: Understanding noise sensitivity in structure from motion. Visual Navigation, 61–88 (1996)Google Scholar
  17. 17.
    Morris, D.D., Kanatani, K., Kanade, T.: Uncertainty modeling for optimal structure from motion. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 200–217. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Szeliski, R., Kang, S.B.: Shape ambiguities in structure-from-motion. IEEE Trans. on PAMI 19, 506–512 (1997)Google Scholar
  19. 19.
    Szeliski, R., Kang, S.B.: Shape Ambiguities in Structure From Motion. Technical Report 96/1, Digital Equipment Corporation, Cambridge Research Lab., Cambridge, Mass. (1996)Google Scholar
  20. 20.
    Fitzgibbon, G.C., Zisserman, A.: Automatic 3D Model Construction for Turn-Table Sequences. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 155–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Harris, C.J., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. Alvey Vision Conf., pp. 147–151 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sungshik Koh
    • 1
  • Chung Hwa Kim
    • 2
  1. 1.Insan Innovation Telecom Co., Ltd.GwnagjuKorea
  2. 2.Dept. of ElectronicsChosun UniversityGwangjuKorea

Personalised recommendations