A New Method for Compression of SAR Imagery Based on MARMA Model

  • Jian Ji
  • Zheng Tian
  • Yanwei Ju
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


In this paper, we present a new method of SAR imagery compression based on multiscale autoregressive moving average (MARMA) models. We use the multiscale representation as the cornerstone of the modeling process, and construct the MARMA models of SAR image. We then predict the initialized image data using these multiscale models. Next we compress image data through coding the residual image. Extension simulations have proven that the proposed method achieves high compression radios with impressive image quality.


Discrete Wavelet Transform Synthetic Aperture Radar Synthetic Aperture Radar Image Compression Method Compression Performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benz, U., Strodl, K., Moreria, A.: A comparison of several algorithms for SAR raw data compression. IEEE Trans. Geos. Remote Sense. 33(5), 1266–1276 (1995)CrossRefGoogle Scholar
  2. 2.
    Xian-Bin, W., Tian, Z.: Mixture multiscale autoregressive modelling of SAR imagery for segmentation. Electronics Letters 39(17), 1272–1274 (2003)CrossRefGoogle Scholar
  3. 3.
    Fosgate, C.H., Krim, H., Irving, W., Karl, W.C., Willsky, A.S.: Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Trans. Image Processing. 6(1), 7–20 (1997)CrossRefGoogle Scholar
  4. 4.
    Choi, H., Baraniuk, R.G.: Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans. Image Processing 10, 1309–1321 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kim, A., Krim, H.: Hierarchical stochastic modeling of SAR imagery for segmentation/compression. IEEE Trans. Processing 47(2), 458–468 (1999)CrossRefGoogle Scholar
  6. 6.
    Schoeder, J., Howard, D., Guanawardean, A.: Multiscale modeling for target detection in complex synthetic aperture radar imagery. In: Proceedings of the Asilomar Conference on Signals, Speech and Signal Processing, Phoenix, AZ, pp. 77–82 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jian Ji
    • 1
  • Zheng Tian
    • 2
  • Yanwei Ju
    • 2
  1. 1.Department of Computer Science & TechnologyNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations