Multi-population Genetic Algorithm for Feature Selection

  • Huming Zhu
  • Licheng Jiao
  • Jin Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


This paper describes the application of a multi-population genetic algorithm to the selection of feature subsets for classification problems. The multi-population genetic algorithm based on the independent evolution of different subpopulations is to prevent premature convergence of each subpopulation by migration. Experimental results with UCI standard data sets show that multi-population genetic algorithm outperforms simple genetic algorithm.


Genetic Algorithm Feature Selection Feature Subset Premature Convergence Neighbor Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Reseaux et Systems Repartis 10, 141–171 (1998)Google Scholar
  2. 2.
    Dash, M., Liu, H.: Feature Selection for Classification. Intelligent Data Analysis 1, 131–156 (1997)CrossRefGoogle Scholar
  3. 3.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  4. 4.
    Jain, A., Zongkerm, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 153–158 (1997)CrossRefGoogle Scholar
  5. 5.
    Kudo, M., Sklansky, K.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)CrossRefGoogle Scholar
  6. 6.
    Kuncheva, L.I., Jain, L.C.: Nearest Neighbor Classifier: Simultaneous Editing and Feature Selection. Pattern Recognition Letters 20, 1149–1156 (1999)CrossRefGoogle Scholar
  7. 7.
    Wen-Yang, L., Tzung-Pei, H., Shu-Min, L.: On adapting migration parameters for multi-population genetic algorithms. In: Proceedings of IEEE International Conference on Systems, Man, Cybernetics, pp. 5731–5735 (2004)Google Scholar
  8. 8.
    Murphy, P.M., Aha, D.W.: UCI Repository of machine learning databases. University of California, Irivne, Department of Information and Computation Science (1996)Google Scholar
  9. 9.
    Narendra, P.M., Fukunaga, K.: A Branch and Bound Algorithm for Feature Subset Selection. IEEE Trans. Computers 26, 917–922 (1977)MATHCrossRefGoogle Scholar
  10. 10.
    Pudil, P., Ferri, F.J., Novovičová, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern Recognition Letters, 1119–1125 (1994)Google Scholar
  11. 11.
    Potts, J.C., Giddens, T.D., Yadav, S.B.: The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection. IEEE Transactions on Systems, Man, and Cybernetics 24, 73–86 (1994)CrossRefGoogle Scholar
  12. 12.
    Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality Reduction Using Genetic Algorithms. IEEE Trans. Evolutionary Computation 4, 164–171 (2000)CrossRefGoogle Scholar
  13. 13.
    Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 10, 335–347 (1989)MATHCrossRefGoogle Scholar
  14. 14.
    Jihoon, Y., Honavar, V.: Feature Subset Selection Using a Genetic Algorithm. IEEE Intelligent Systems 13, 44–49 (1998)CrossRefGoogle Scholar
  15. 15.
    Bin, Y., Baozong, Y.: A More Efficient Branch and Bound Algorithm for Feature Selection. Pattern Recognition 26, 883–889 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Huming Zhu
    • 1
  • Licheng Jiao
    • 1
  • Jin Pan
    • 2
  1. 1.Institute of Intelligent Information ProcessingXidian UniversityXi’anChina
  2. 2.Dept. of Computer and Information EngXi’an communication instituteXi’anChina

Personalised recommendations