Advertisement

Using of Intelligent Particle Swarm Optimization Algorithm to Synthesis the Index Modulation Profile of Narrow Ban Fiber Bragg Grating Filter

  • Yumin Liu
  • Zhongyuan Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)

Abstract

A new method for synthesis of fiber Bragg gratings based filter is proposed. By combining the transmission matrix method and the particles swarm optimization algorithm, we obtain a novel method for the inverse problem of the synthesizing fiber gratings. With adjusting the parameters of the PSO algorithm we can get the demand index modulation for the target reflection spectrums including the phase response. Compared with other synthesis methods, the PSO algorithm characteristics are simple and faster convergence, especially by using the improved local PSO (LPSO) algorithm, we obtained the better results for the same problem.

Keywords

Particle Swarm Optimization Fiber Bragg Grating Particle Swarm Optimization Algorithm Index Modulation Side Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ibsen, M., Feced, R.: Fiber Bragg gratings for pure dispersion-slope compensation. Opt. Lett. 28, 980–982 (2003)CrossRefGoogle Scholar
  2. 2.
    Poladian, L.: Simple grating synthesis algorithm. Opt. Lett. 25, 787–789 (2000)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Erdogan, T.: Layer Peeling algorithm for reconstruction of long-period fiber gratings. Electron. Lett. 37, 154–155 (2001)CrossRefGoogle Scholar
  4. 4.
    Brenne, J.K., Skaar, J.: Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms. J. Lightwave Technol. 21, 254–263 (2003)CrossRefGoogle Scholar
  5. 5.
    Peral, E., Capmany, J., Marti, J.: Iterative solution to the gel’fand-levitan-marchenko coupled equations and application to synthesis of fiber gratings. IEEE J. Quantum Electron 32, 2078–2084 (1996)CrossRefGoogle Scholar
  6. 6.
    Skaar, J., Risvik, K.M.: A genetic algorithm for the inverse problem in synthesis of fiber gratings. J. Lithtwave Technol. 16, 1928–1932 (1998)CrossRefGoogle Scholar
  7. 7.
    Lee, C.L., Lai, Y.: Evolutionary programming synthesis of optimal long-period fiber gratings filters for EDFA Gain Flattening. IEEE Photon. Technol. Lett. 14, 1557–1559 (2002)CrossRefGoogle Scholar
  8. 8.
    Dong, P., Azana, J., Kirk, A.G.: Opt. Communications 228, 303 (2003)Google Scholar
  9. 9.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimizer in noisy and continuously changing environments. In: Artifical Intelligence and Soft Computing, pp. 289–294. IASTED/ACTA Press (2001)Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. Of IEEE International Conference on Neural Networks, Piscataway, NJ, USA, pp. 1942–1948 (1995)Google Scholar
  11. 11.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. Evolutionary Programming VII, 591–600 (1998)Google Scholar
  12. 12.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  13. 13.
    Eberhart, R.C., Shi, Y.: Comparison Inertia weights and constriction factors in particle swam optimization. In: Proc. 2000, ICEC, pp. 84–88 (2000)Google Scholar
  14. 14.
    Liu, Y., Yu, Z., Yang, H., Zhang, N., Feng, Q., Zhang, X.: Numerical optimization and simulation to wavelength-division multiplexing isolation filter consisted of two identical long period fiber grating. Optics Communications 246, 367–372 (2005)CrossRefGoogle Scholar
  15. 15.
    Zuffada, C., Cwik, T., Ditchman, C.: Synthesis of Novel All-Dielectric gratings filter using Genetic Algorithms. IEEE Transctions on Antennas and Propagation 46, 657–663 (1998)CrossRefGoogle Scholar
  16. 16.
    Casagrande, F., Crespi, P., Grassi, A.M., et al.: From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing. Applied optics 41, 5238–5343 (2002)CrossRefGoogle Scholar
  17. 17.
    Cormier, G., Boudreau, R.: Real-coded genetic algorithm for Bragg grating parameter synthesis. Optical Society of America B. 18, 1771–1776 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yumin Liu
    • 1
    • 2
  • Zhongyuan Yu
    • 1
    • 2
  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Key Laboratory of Optical Communications and Lightwave TechnologiesMinistry of EducationBeijingChina

Personalised recommendations