Advertisement

Using Back Propagation Feedback Neural Networks and Recurrence Quantification Analysis of EEGs Predict Responses to Incision During Anesthesia

  • Liyu Huang
  • Weirong Wang
  • Sekou Singare
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)

Abstract

This paper presents a new approach to detect depth of anaesthesia by using recurrence quantification analysis of electroencephalogram (EEG) and artificial neural network(ANN) . From 98 consenting patient experiments, 98 distinct EEG recordings were collected prior to incision during isoflurane anaesthesia of different levels. The seven measures of recurrence plot were extracted from each of four-channel EEG time series. Prediction was made by means of ANN. Training and testing the ANN used the ‘leave-one-out’ method. The prediction was tested by monitoring the responses to incision. The system was able to correctly classify purposeful responses in average accuracy of 92.86% of the cases. This method is also computationally fast and acceptable real-time clinical performance was obtained.

Keywords

Recurrence Plot Recurrence Quantification Analysis Bispectral Analysis Spectral Edge Frequency Sponse State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moerman, N., Bonke, B., Oosting, J.: Awareness and recall during general anesthesia: facts and feelings. Anesthesiology 79, 454–464 (1993)CrossRefGoogle Scholar
  2. 2.
    Ghoneim, M.M., Block, R.L.: Learning and consciousness during general anaesthesia. Anesthesiology 76, 279–305 (1992)CrossRefGoogle Scholar
  3. 3.
    Rubin, M.A., Freeman, H.: Brain potential changes in man during cyclopropane anesthesia. J. Neurophysiol. 3, 33–42 (1940)Google Scholar
  4. 4.
    Thomsen, C.E., Christensen, K.N., Rosenflack, A.: Computerized monitoring of depth of anaesthesia with isoflurane. Br. J. Anaesthesia. 63, 36–43 (1989)CrossRefGoogle Scholar
  5. 5.
    Sharma, A., Roy, R.J.: Design of a recognition system to predict movement during anesthesia. IEEE Trans. on Biomed. Eng. 44, 505–511 (1997)CrossRefGoogle Scholar
  6. 6.
    Kearse, L.A., Manberg, P., DeBros, F. (eds.): Bispectral analysis of the electroencephalogram during induction of anesthesia predict hemodynamic responses to laryngoscopy and intubation. Electroencephalography and clinical Neurophysiology 90, 194–200 (1994)Google Scholar
  7. 7.
    Vernon, J.M., Lang, E., Sebel, P.S. (eds.): Prediction of movement using bispectral electroencephalographic analysis during propofol/alfentanil or isoflurane/alfentanil anesthesia. Anesth. Analg. 80, 780–785 (1995)Google Scholar
  8. 8.
    Nayak, A., Roy, R.J., Sharma, A.: Time-frequency spectral representation of the EEG as an aid in the detection of depth of anaesthesia. Ann. Biomed. Eng. 22, 501–513 (1994)CrossRefGoogle Scholar
  9. 9.
    Pradhan, N., Adasivan, P.K.: Validity of dimensional complexity measures of EEG signals. Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 173–286 (1997)MATHCrossRefGoogle Scholar
  10. 10.
    Ogo, K., Nakagawa, W.: Chaos and fractal properties in EEG data. Electron. Commun. Jpn. 78, 27–36 (1995)Google Scholar
  11. 11.
    Yaylali, I., Kocak, H., Jayakar, P.: Detection of seizures from small samples using nonlinear dynamic system theory. IEEE Trans. on Biomed. Eng. 43, 743–751 (1996)CrossRefGoogle Scholar
  12. 12.
    Jackson, M.E., Cauller, L.J.: Non-linear dynamics of neocortical spontaneous field potentials during anesthetized and awake states in chronically implanted rats. Soc. Neurosci. Abst. 21, 57.10 (1995)Google Scholar
  13. 13.
    Theiler, J.: Testing for nonlinearity in time series: the method of surrogate data. Physica D. 58, 77–94 (1992)CrossRefMATHGoogle Scholar
  14. 14.
    Pritchard, W.S.: Dimensional analysis of resting human EEG II: Surrogate data testingindicates nonlinearity but not low-dimensional chaos. Psychophysiology 32, 486–491 (1995)CrossRefGoogle Scholar
  15. 15.
    Wolf, A., Swift, J.B., Swinney, H.L. (eds.): Determining Lyapunov exponents from atime series. Physica D. 16, 217–285 (1985)Google Scholar
  16. 16.
    Buhrer, M.: Thiopental pharmacodynamics. Anesthesiology 77, 226–236 (1992)CrossRefGoogle Scholar
  17. 17.
    Zbinden, A.M., Maggiorini, M., Petersen-Felix, S. (eds.): Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. Anesthesiology 80, 253–260 (1994)Google Scholar
  18. 18.
    Steward, A., Allott, P.R., Mapleson, W.W.: The solubility of halothane in canine blood and tissues. Br. J. Anaesthesia 47, 423–433 (1975)CrossRefGoogle Scholar
  19. 19.
    Mapleson, W.W.: Circulation-time models of the uptake of inhaled anaesthetics and data for quantifying them. Br. J. Anaesthesia 45, 319–333 (1973)CrossRefGoogle Scholar
  20. 20.
    Takens, F.: Determining strange attractors in turbulence. Lecture notes in math., vol. 898, pp. 361–381 (1981)Google Scholar
  21. 21.
    Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D. 110, 43–50 (1997)MATHCrossRefGoogle Scholar
  22. 22.
    Kennel, M.B.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A. 65, 3403–3411 (1992)CrossRefGoogle Scholar
  23. 23.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33, 1134–1140 (1986)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)CrossRefGoogle Scholar
  25. 25.
    Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)Google Scholar
  26. 26.
    Zbilut, J.P., Webber Jr., C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A. 171, 199–203 (1992)CrossRefGoogle Scholar
  27. 27.
    Trulla, L.L., Giuliani, A., Zbilut, J.P., Webber Jr., C.L.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A. 223, 255–260 (1996)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Marwan, N., Wessel, N., Meyerfeldt, U. (eds.): Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Reviw. E. 66, 026702 (2002)Google Scholar
  29. 29.
    Lippmann, R.P.: An Introduction to Computing with Neural nets. IEEE ASSP Magazine, 4–22 (April 1987)Google Scholar
  30. 30.
    Mirchandami, G., Cao, W.: On hidden nodes for neural nets. IEEE Trans. on Circuits and System 36, 661–664 (1989)CrossRefGoogle Scholar
  31. 31.
    Vogel, M.A., Wong, A.K.C.: PFS clustering method. IEEE Trans. on Pattern Anal. Mach. Intell. 1, 237–245 (1979)MATHCrossRefGoogle Scholar
  32. 32.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic, San Diego (1990)MATHGoogle Scholar
  33. 33.
    Drummond, J.C., Brann, C.A., Perkins, D.E. (eds.): A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in determination of depth of anaesthesia. Acta Anaesthesiologica Scand. 35, 693–699 (1991)Google Scholar
  34. 34.
    Rampil, I.J., Matteo, R.S.: Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 67, 139–142 (1987)CrossRefGoogle Scholar
  35. 35.
    Sebel, P.S., Bowles, S.M., Saini, V. (eds.): EEG bispectrum predicts movement during thiopental/isoflurane anaesthesia. J. Clin. Monit. 11, 83–91 (1995)Google Scholar
  36. 36.
    Linkens, D.A.: Adaptive and intelligent control in anesthesia. IEEE Contr. Syst. Technol., 6–11 (December 1992)Google Scholar
  37. 37.
    Argyris, J.H., Faust, G., Haase, M.: An Exploration of Chaos. North-Holland, Amsterdam (1994)MATHGoogle Scholar
  38. 38.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  39. 39.
    Quasha, A.L., Eger, E.I., Tinker, H.H.: Determination and applications of MAC. Anesthesiol. 53, 315–334 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Liyu Huang
    • 1
    • 2
  • Weirong Wang
    • 1
    • 3
  • Sekou Singare
    • 2
  1. 1.Department of Biomedical EngineeringXidian UniversityXi’anChina
  2. 2.Institute of Biomedical EngineeringXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Medical InstrumentationShanhaidan HospitalXi’anChina

Personalised recommendations