A Wireless Miniature Device for Neural Stimulating and Recording in Small Animals

  • Weiguo Song
  • Yongling Wang
  • Jie Chai
  • Qiang Li
  • Kui Yuan
  • Taizhen Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4222)


This paper presents a miniature device, which is used for stimulating to and recording from the brain of an animal, based on system on chip (nRF24E1). Its performance is validated by in vivo experiments, in which rats are trained to run down a maze to respond to auditory instruction cues by turning right or left in order to get an electrical stimulation ‘virtual reward’, and by comparing spikes recorded from the brain of rats between our device and a commercially available device (Spike2, Cambridge Electronic Design Ltd.). Results show that our device can work reliably and stably, and with notable characteristics of light weight (9g, without battery), simplicity and practicality.


Radio Frequency Neural Signal Cambridge Electronic Design Neural Stimulate Miniature Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavuoto, J.: Neural Engineering’s Image Problem. IEEE Spectrum, 32–37 (April 2004)Google Scholar
  2. 2.
    Mogilner, A.Y., Benabid, A.L., Rezai, A.R.: Brain Stimulation: Current Applications and Future Prospects. Thalamus Relat. Syst. 1, 255–267 (2001)Google Scholar
  3. 3.
    Holzer, R., Shimoyama, I.: Locomotion Control of a Bio-Robotic System via Electric Stimulation. In: Proc. of the IEEE/RSJ Int. Conf., vol. 3, pp. 1514–1519 (1997)Google Scholar
  4. 4.
    Talwar, S.K., Xu, S.H., Hawley, E.S., Weiss, S.A., Chapin, J.K., Moxon, K.A.: Behavioural Neuroscience: Rat Navigation Guided by Remote Control. Nature 417, 37–38 (2002)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Romo, R., Hernandez, A., Zainos, A., Lemus, L., Brody, C.D.: Neuronal Correlates of Decision-Making in Secondary Somatosensory Cortex. Nature Neurosci. 5(11), 1217–1225 (2002)CrossRefGoogle Scholar
  7. 7.
    Nicolelis, M.A.L.: Actions from Thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  8. 8.
    Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.: Real-time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neurosci. 2(7), 664–670 (1999)CrossRefGoogle Scholar
  9. 9.
    Mussa-lvaldi, F.A., Miller, L.E.: Brain-machine Interfaces: Computational Demands and Clinical Needs Meet Basic Neuroscience. Trends in Neurosci. 26(6), 329–334 (2003)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Arabi, K., Sawan, M.A.: Electronic Design of a Multichannel Programmable Implant for Neuromuscular Electrical Stimulation. IEEE Trans. Rehab. Eng. 7(2), 204–214 (1999)CrossRefGoogle Scholar
  12. 12.
    Obeid, I., Morizio, J.C., Moxon, K.A., et al.: Two Multichannel Integrated Circuits for Neural Recording and Signal Processing. IEEE Tran. Biomed. Eng. 50(2), 255–258 (2003)CrossRefGoogle Scholar
  13. 13.
    Lei, Y.L., Sun, N.L., Wilson, F.A.W., et al.: Telemetric Recordings of Single Neuron Activity and Visual Scenes in Monkeys Walking in an Open Field. J. Neurosci. Methods 135, 35–41 (2004)CrossRefGoogle Scholar
  14. 14.
    Nieder, A.: Miniature Stereo Radio Transmitter for Simultaneous Recording of Multiple Single-Neuron Signals from Behaving Owls. J. Neurosci. Methods 10, 157–164 (2000)CrossRefGoogle Scholar
  15. 15.
    Takeuchi, S., Shimoyama, I.: A Radio-Telemetry System with Shape Memory Alloy Microelectrode for Neural Recording of Freely Moving Insects. IEEE Tran. Biomed. Eng. 51(1), 133–137 (2004)CrossRefGoogle Scholar
  16. 16.
    Song, W.G., Chai, J., Han, T.Z., Yuan, K.: A Remote Controlled Multimode Micro-Stimulator for Freely Moving Animals. Acta Physiologica Sinica 58(2), 183–188 (2006)Google Scholar
  17. 17.
  18. 18.
    Bao, X.M., Shu, S.Y.: The Stereotaxic Atlas of the Rat Brain. People’s Sanitation Press, Beijing (1991)Google Scholar
  19. 19.
    Lewicki, M.S.: A Review of Methods for Spike Sorting: The Detection and Classification of Neural Action Potentials. Network: Computation Neural System 9, R53–R78 (1998)CrossRefGoogle Scholar
  20. 20.
    Kim, K.H., Kim, S.J.: Neural Spike Sorting Under Nearly 0-dB Signal-to-Noise Ratio Using Nonlinear Energy Operator and Artificial Neural-Network Classifier. IEEE Tran. Biomed. Eng. 47(10), 1406–1411 (2000)CrossRefGoogle Scholar
  21. 21.
    Mukhopadhyay, S., Ray, G.C.: A New Interpretation of Nonlinear Energy Operator and Its Efficacy in Spike Detection. IEEE Tran. Biomed. Eng. 45(2), 180–187 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Weiguo Song
    • 1
  • Yongling Wang
    • 1
  • Jie Chai
    • 2
  • Qiang Li
    • 2
  • Kui Yuan
    • 1
  • Taizhen Han
    • 2
  1. 1.Institute of AutomationBeijingChina
  2. 2.Department of PhysiologyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations