Advertisement

A Scheduling Order-Based Method to Solve Timetabling Problems

  • L. Ingolotti
  • F. Barber
  • P. Tormos
  • A. Lova
  • M. A. Salido
  • M. Abril
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)

Abstract

We propose an efficient method that obtains train timetables. It solves conflicts among trains by assigning priorities for each track section of their journey. The heuristic used to determine the priority for each train, takes into account the objective function of the problem. With this method, we try to explore different regions of the same search space as soon as possible so that the final user obtains a feasible solution in a reasonable computation time.

Keywords

Search Tree Railway Line Timetabling Problem Train Schedule Railway Infrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordeau, J., Toth, P., Vigo, D.: A survey of optimization models for train routing and scheduling. Transportation Science 32, 380–446 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Lova, A., Tormos, P., Barber, F., Ingolotti, L., Salido, M.A., Abril, M.: Intelligent Train Scheduling on a High-Loaded Railway Network. In: ATMOS 2004: Algorithmic Methods and Models for Optimization of Railways. LNCS, Springer Verlag, Heidelberg (2005) (to appear)Google Scholar
  3. 3.
    Nachtigall, K., Voget, S.: Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks 103, 610–627 (1997)Google Scholar
  4. 4.
    Schrijver, A., Steenbeek, A.: Timetable construction for railned. Technical Report, CWI, Amsterdam, The Netherlands (in Dutch) (1994)Google Scholar
  5. 5.
    Schirmer, A., Riesenberg, S.: Parameterized heuristics for project scheduling-Biased random sampling methods. Technical Report 456. Institute fr Betriebswirtschaftslehre der UNIVERSITT KIEL (1997)Google Scholar
  6. 6.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Oliveira, S.E.: Solving Single-Track Railway Scheduling Problem Using Constraint Programming. Phd Thesis. Univ. of Leeds, School of Computing (2001)Google Scholar
  8. 8.
    Tormos, P., Lova, A.: A Competitive Heuristic Solution Technique For Resource-Constrained Project Scheduling. Annals Of Operations Research 102, 65–81 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Walker, C., Snowdon, J., Ryan, D.: Simultaneous disruption recovery of a train timetable and crew roster in real time. Comput. Oper. Res. 32(8), 2077–2094 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L. Ingolotti
    • 1
  • F. Barber
    • 1
  • P. Tormos
    • 2
  • A. Lova
    • 2
  • M. A. Salido
    • 1
  • M. Abril
    • 1
  1. 1.DSICPolytechnic University of ValenciaSpain
  2. 2.DEIOACPolytechnic University of ValenciaSpain

Personalised recommendations