The Multi-Team Formation Defense of Teamwork

  • Paulo Trigo
  • Helder Coelho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)


We formulate the multi-team formation (M-TF) domain-independent problem and describe a generic solution for the problem. We illustrate the M-TF derogation component in the domain of an urban fire disaster.. The M-TF problem is the precursor of teamwork that explicitly addresses the achievement of several short time period goals, where the work to achieve the complete set of goals overwhelms the working capacity of the team formation space (all teams formed from the finite set of available agents). Decisions regarding team formation are made considering that team reformation is the means to counteract possible deviations from a desirable teamwork behavioral performance. The RoboCupRescue large-scale disaster environment is used to illustrate the design of the derogation domain-specific M-TF component.


Achievement Goal Burnt Area Team Activity Total Destruction Operational Perspective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schurr, N., Okamoto, S., Maheswaran, R., Scerri, P., Tambe, M.: Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation. In: Evolution of a Teamwork Model, Cambridge University Press, Cambridge (2004)Google Scholar
  2. 2.
    Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR&R-91), pp. 473–484. Morgan Kaufmann Publishers, San Mateo (1991)Google Scholar
  3. 3.
    Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence 86(2), 269–357 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Nair, R., Tambe, M., Marsella, S.: Team formation for reformation in multi-agent domains like RoboCupRescue. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 150–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shimada, S.: RoboCupRescue: Search and Rescue in Large-Scale Disasters as a Domain for Autonomous Agents Research. In: Proceedings of IEEE International Conference on Man, System and Cybernetics (MSC-99), Tokyo, Japan, vol. VI, pp. 739–743, (October 12-15 , 1999)Google Scholar
  6. 6.
    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shimada, S.: The RoboCup-Rescue Project: A Robotic Approach to the Disaster Mitigation Problem. In: In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA00), San Francisco, USA, pp. 4090–4095 (April 23-28, 2000)Google Scholar
  7. 7.
    Trigo, P., Araújo, P., Remédios, A., Lopes, C., Basílio, B., Loureiro, T., Moniz, L., Coelho, H.: The 5Rings Team Description Paper. In: Proceedings of the RoboCup2004 Symposium, Team Description Papers, Lisbon, Portugal (July 4-5, 2004)Google Scholar
  8. 8.
    Trigo, P., Coelho, H.: The Multi-Team Formation Precursor of Teamwork. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 560–571. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cohen, P., Levesque, H.: Teamwork. Special. Issue on Cognitive Science and Artificial Intelligence, Noûs 25(4), 487–512 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paulo Trigo
    • 1
  • Helder Coelho
    • 2
  1. 1.Departamento da Engenharia da Electrónica e Telecom. e de ComputadoresInstituto Superior de Engenharia de LisboaLisboaPortugal
  2. 2.Departamento de InformáticaFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations