Advertisement

Early Fault Classification in Dynamic Systems Using Case-Based Reasoning

  • Aníbal Bregón
  • M. Aránzazu Simón
  • Juan José Rodríguez
  • Carlos Alonso
  • Belarmino Pulido
  • Isaac Moro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)

Abstract

In this paper we introduce a system for early classification of several fault modes in a continuous process. Early fault classification is basic in supervision and diagnosis systems, since a fault could arise at any time, and the system must identify the fault as soon as possible. We present a computational framework to deal with the problem of early fault classification using Case-Based Reasoning. This work illustrates different techniques for case retrieval and reuse that have been applied at different times of fault evolution. The technique has been tested for a set of fourteen fault classes simulated in a laboratory plant.

Keywords

Fault Detection Dynamic Time Warping Fault Mode Manhattan Distance Series Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. In: AI Communications, vol. 7: 1, pp. 39–59. IOS Press, Amsterdam (1994)Google Scholar
  2. 2.
    Alonso, C., Rodriguez, J.J., Pulido, B.: Enhancing consistency-based diagnosis with machine-learning techniques. In: 14th International Workshop on Principles of Diagnosis, DX03, Washington, D.C. USA (2003)Google Scholar
  3. 3.
    Brann, D.M., Thurman, D.A., Mitchell, C.M.: Case-Based Reasoning as a Methodology for Accumulating Human Expertise for Discrete System Control. In: Proceedings of the IEEE Int. Conf. on SMC, Vancouver, B. C., Canada, pp. 4219–4223 (1995)Google Scholar
  4. 4.
    Bregón, A., Pulido, B., Simón, M.A., Moro, I., Prieto, O., Rodríguez, J.J., Alonso, C.: Focusing fault localization in model-based diagnosis with case-based reasoning. In: 17th International Workshop on Principles of Diagnosis, DX06, Peñaranda de Duero, Spain (2006)Google Scholar
  5. 5.
    Bregón, A., Simón, M.A., Rodríguez, J.J., Alonso, C., Pulido, B., Moro, I.: Un sistema de razonamiento basado en casos para la clasificación de fallos en sistemas dinámicos. In: Primer Congreso Español de Informática, Granada, España (2005)Google Scholar
  6. 6.
    Britanik, J., Marefat, M.: Case-Based Manufacturing Process Planning with integrated support for knowledge sharing. In: IEEE Int. Symp. on Assembly Task Planning, pp. 107–112 (1995)Google Scholar
  7. 7.
    Colomer, J., Melendez, J., Gamero, F.: A qualitative case-based approach for situation assessment in dynamic systems. application in a two tank system. In: Proceedings of the IFAC-Safeprocess 2003, Washington, USA (2003)Google Scholar
  8. 8.
    Colomer, J., Melendez, J., Gamero, F.I.: Qualitative representation of process trends for situation assessment based on cases. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona, Spain (2002)Google Scholar
  9. 9.
    Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7(3), 358–386 (2005)CrossRefGoogle Scholar
  10. 10.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  11. 11.
    Leake, D.B.: CBR in Context: The present and Future. In: Case-Based Reasoning: Experiences, Lessons, and Future Directions, AAAI Press, Menlo Park (1996)Google Scholar
  12. 12.
    Lenz, M., Manago, M., Auriol, E.: Diagnosis and decision support. In: Case-Based Reasoning Technology, pp. 51–90 (1998)Google Scholar
  13. 13.
    Price, C.: Computer-based diagnostic systems. Springer, New York (1999)MATHGoogle Scholar
  14. 14.
    Prieto, O., Bregón, A.: A comparative of two machine-learning techniques to focus the diagnosis task (to be published, draft available upon request). In: Third European Starting AI Researcher Symposium (STAIRS’06), Riva del Garda, Italy (2006)Google Scholar
  15. 15.
    Pulido, B., Alonso, C., Acebes, F.: Lessons learned from diagnosing dynamic systems using possible conflicts and quantitative models. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS (LNAI), vol. 2070, pp. 135–144. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Pulido, B., González, C.A.: Possible conflicts: a compilation technique for consistency-based diagnosis. IEEE Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics 34(5), 2192–2206 (2004)CrossRefGoogle Scholar
  17. 17.
    Pulido, B., Rodriguez Diez, J.J., Alonso González, C., Prieto, O., Gelso, E., Acebes, F.: Diagnosis of continuous dynamic systems: integrating consistency-based diagnosis with machine-learning techniques. In: XVI IFAC World Congress, 2005, Prague, Zcheck Republic (2005)Google Scholar
  18. 18.
    Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers, San Francisco (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aníbal Bregón
    • 1
  • M. Aránzazu Simón
    • 1
  • Juan José Rodríguez
    • 2
  • Carlos Alonso
    • 1
  • Belarmino Pulido
    • 1
  • Isaac Moro
    • 1
  1. 1.Intelligent Systems Group (GSI), Department of Computer Science, E.T.S.I. InformáticaUniv. of ValladolidValladolidSpain
  2. 2.Lenguajes y Sistemas InformáticosUniv. of BurgosBurgosSpain

Personalised recommendations