Advertisement

Agent-Based Solutions for Natural Language Generation Tasks

  • Raquel Hervás
  • Pablo Gervás
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)

Abstract

When building natural language generation applications it is desireable to have the possibility of assembling modules that use different techniques for each one of the specific generation tasks. This paper presents an agent-based module for referring expression generation and aggregation, implemented within the framework of a generic architecture for implementing multi-agent systems: Open Agent Architecture.

Keywords

Noun Phrase Multiagent System Natural Language Generation Spanish Text Blackboard Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  2. 2.
    Goldberg, E., Driedger, N., Kittredge, R.: Using natural-language processing to produce weather forecasts. IEEE Expert: Intelligent Systems and Their Applications 9, 45–53 (1994)Google Scholar
  3. 3.
    Callaway, C., Lester, J.: Narrative prose generation. In: Proceedings of the 17th IJCAI, Seattle, WA, pp. 1241–1248 (2001)Google Scholar
  4. 4.
    DeSmedt, K., Horacek, H., Zock, M.: Architectures for natural language generation: Problems and perspectives. In: Adorni, G., Zock, M. (eds.) EWNLG 1993. LNCS, vol. 1036, pp. 17–46. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc, Boston, MA (1999)Google Scholar
  6. 6.
    Reiter, E., Dale, R.: A fast algorithm for the generation of referring expressions. In: Proceedings of the 14th conference on Computational linguistics, Nantes, France (1992)Google Scholar
  7. 7.
    Kibble, R., Power, R.: An integrated framework for text planning and pronominalization. In: Proc. of the International Conference on Natural Language Generation (INLG), Israel (2000)Google Scholar
  8. 8.
    Palomar, M., Ferrández, A., Moreno, L., Martínez-Barco, P., Peral, J., Saiz-Noeda, M., Muñoz, R.: An algorithm for anaphora resolution in spanish text. Computational Linguistics 27, 545–567 (2001)CrossRefGoogle Scholar
  9. 9.
    Reape, M., Mellish, C.: Just what is aggregation anyway? In: Proceedings of the 7th EWNLG, Toulouse, France (1999)Google Scholar
  10. 10.
    Martin, D.L., Cheyer, A.J., Moran, D.B.: The open agent architecture: A framework for building distributed software systems. Applied Artificial Intelligence 13, 91–128 (1999)CrossRefGoogle Scholar
  11. 11.
    Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on CBR. In: Macintosh, A., Ellis, R., Allen, T. (eds.) 12th Conference on Applications and Innovations in Intelligent Systems, Cambridge, UK. WICS, Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Hervás, R., Gervás, P.: Uso flexible de soluciones evolutivas para tareas de generaci ón de lenguaje natural. Procesamiento de Lenguaje Natural 35, 187–194 (2005)Google Scholar
  13. 13.
    Reiter, E.: Has a consensus NL generation architecture appeared, and is it psychologically plausible? In: McDonald, D., Meteer, M. (eds.) Proceedings of the 7th. IWNLG ’94, Kennebunkport, Maine, pp. 163–170 (1994)Google Scholar
  14. 14.
    García, C., Hervás, R., Gervás, P.: Una arquitectura software para el desarrollo de aplicaciones de generación de lenguaje natural. Procesamiento de Lenguaje Natural 33, 111–118 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raquel Hervás
    • 1
  • Pablo Gervás
    • 1
  1. 1.Departamento de Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridSpain

Personalised recommendations