Agent Behavior Representation in INGENIAS

  • Jorge J. Gómez Sanz
  • Rubén Fuentes
  • Juan Pavón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)


Nowadays, we have different agent oriented methodologies that enable developers to produce agent oriented designs. One of the recurrent problems of these methodologies is how to describe the behaviour of agents within a system. A developer needs primitives to express autonomy, proactivity, and social concerns of his agents, but there are problems in understanding what does these elements mean, beyond any natural language explanation. There is a clear need of semantic models understandable by average engineers. These models could help in foreseeing the impact of autonomy with respect system goals, or determining if, in an agent specification, a task will ever be scheduled for execution. This paper presents a proposal of semantic model for the visual modelling language used in INGENIAS, a project started in 2002 and considered the inheritor of MESSAGE/UML.


Mental State Modal Logic Semantic Model Agent Behavior State Base Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordini, R., Hübner, J.F.: Java-based AgentSpeak interpreter used with saci for multi-agent distribution over the net (2004),
  2. 2.
    Carver, N., Lesser, V.R.: The Evolution of Blackboard Control Architectures. UM-CS-1992-071. Department of Computer Science, University Massachusetts (1992)Google Scholar
  3. 3.
    d’Inverno, M., Kinny, D., et al.: A formal specification of dMARS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS (LNAI), vol. 1365, pp. 155–176. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Fikes, R., Nilsson, J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 2 (1971)Google Scholar
  5. 5.
    Gomez-Sanz, J.J.: Modelado de Sistemas Multi-Agente. Dpto. Sistemas Informáticos y Programación. Madrid, Universidad Complutense de Madrid (2002)Google Scholar
  6. 6.
    Grasia: GRASIA site and INGENIAS Development Kit site (2004).,
  7. 7.
    Kinny, D., Georgeff, M., et al.: A methodology and modelling technique for systems of BDI agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 56–71. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Mascardi, V.: A Survey on Languages for Programming BDI-style Agents. PROMAS Technical Forum, Ljubljana, Slovenia (2005)Google Scholar
  9. 9.
    Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)CrossRefGoogle Scholar
  10. 10.
    Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDIArchitecture. In: 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91), Morgan Kaufmann publishers Inc, San Francisco (1991)Google Scholar
  11. 11.
    Shoham, Y.: Agent Oriented Programming. Artificial Intelligence 60(1), 51–92 (1993)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Singh, M.P.: A social semantics for agent communication languages. In: Dignum, F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916, pp. 31–45. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Wooldridge, M.: Agent-based Software Engineering. In: IEEE Proceedings on Software Engineering, vol. 144(1), pp. 26–37 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jorge J. Gómez Sanz
    • 1
  • Rubén Fuentes
    • 1
  • Juan Pavón
    • 1
  1. 1.Facultad de InformáticaUniversidad Complutense de Madrid 

Personalised recommendations