Robust Clustering Algorithms Based on Finite Mixtures of Multivariate t Distribution

  • Chengwen Yu
  • Qianjin Zhang
  • Lei Guo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4221)


Providing protection against outlier in clustering data is a difficult problem. We proposed two robust clustering algorithms which integrate two modified versions of EM algorithm for mixtures t model with a model selection criterion respectively. The proposed methods can select the number of clusters component automatically by a combined component annihilation strategy and can also avoid the drawbacks of traditional mixture-based clustering algorithms – highly dependent on initialization and may converge to the boundary of the parameter space [7]. Experiment results show the contrast among different algorithms and demonstrate the effectiveness of our algorithms.


Finite Mixture Finite Mixture Model Mixture Normal Model Deterministic Annealing Minimum Message Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  2. 2.
    McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons, New York (2000)MATHCrossRefGoogle Scholar
  3. 3.
    McLachlan, G., Peel, D.: Robust Cluster Analysis via Mixtures of Multivariate t Distribution. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 658–666. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Peel, D., McLachlan, G.: J. Robust Mixture Modeling using the t Distribution, Statistics and Computing 10, 339–348 (2000)Google Scholar
  5. 5.
    Celeux, G., Chretien, S., Forbes, F., Mkhadri, A.: A Component Wise EM Algorithm for Mixtures. J. of Computational and Graphical Statistics 16(10), 697–712 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Liu, C., Rubin, D.B.: ML Estimation of the t Distribution using EM and its Extensions. ECM and ECME, Statistica Sinica (5), 19–39 (1995)Google Scholar
  7. 7.
    Figueiredo, M.A.T., Jain, A.K.: Unsupervised Learning of Finite Mixture Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)CrossRefGoogle Scholar
  8. 8.
    Bernardo, J., Smith, A.: Bayesian Theory. J. Wiley & Sons, Chichester (1994)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chengwen Yu
    • 1
  • Qianjin Zhang
    • 1
  • Lei Guo
    • 1
  1. 1.College of Automatic ControlNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations