Skip to main content

Effects of Using Different Neural Network Structures and Cost Functions in Locomotion Control

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

  • 1284 Accesses

Abstract

Effects of using different neural network structures and cost functions in locomotion control are investigated. Simulations focus on refinement and a thorough understanding of an artificial intelligent learning scheme. This scheme uses a neural network controller with backpropagation through time learning rule. Through learning, the controller can generate locomotion trajectory along a pre-defined path. Different issues regarding the scheme have been examined. They include the effects of using different numbers of hidden units, the effects of using only angle parameters in the cost function, and the effects of including an energy criterion in the cost function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cybenko, G.: Approximation by Superpositions of a Sigmoidal Function. Mathematics of Control, Signals, and Systems 2, 303–314 (1987)

    Article  MathSciNet  Google Scholar 

  2. Girosi, F., Poggio, T.: Networks and The Best Approximation Property. Biological Cybernetics 63, 169–179 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Park, J., Sanberg, I.W.: Universal Approximation Using Radial Basis Function Networks. Neur. Comp. 3, 246–257 (1991)

    Article  Google Scholar 

  4. Wang, Z., Tham, M.T., Morris, A.J.: Multilayer Neural Networks: Approximated Canonical Decomposition of Nonlinearity. International Journal of Control 56, 655–672 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhao, M., Liu, L., Wang, J., Chen, K.: Gaits Compensation Algorithm for Humanoid Robot Walking Control. In: Proc. of CLAWAR, pp. 171–176 (2002)

    Google Scholar 

  6. Fujimoto, Y., Kawamura, A.: Simulation of an Autonomous Biped Walking Robot Including Environmental Force Interaction. IEEE Robotics and Automation Magazine 5, 33–42 (1998)

    Article  Google Scholar 

  7. Collins, S.H., Wisse, M., Ruina, A.: A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees. International Journal of Robotics Research 20, 607–615 (2001)

    Article  Google Scholar 

  8. Miller, W.T., Kun, A.L.: Dynamic Balance of a Biped Walking Robot. In: Omidvar, O., Smagt, P. (eds.) Neural Systems for Robotics, pp. 17–35. Academic Press, London (1997)

    Google Scholar 

  9. Park, S.H., Kim, D.S., Lee, Y.J.: Discontinuous Spinning Gait of a Quadruped Walking Robot with Waist-joint. In: Proc. of IEEE International Conference on Intelligent Robots and Systems, pp. 2744–2749 (2005)

    Google Scholar 

  10. Noh, K.K., Kim, J.G., Huh, U.Y.: Stability Experiment of a Biped Walking Robot with Inverted Pendulum. 3, 2475–2479 (2004)

    Google Scholar 

  11. Igarashi, H., Kakikura, M.: Path and Posture Planning for Walking Robots by Artificial Potential Field Method. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2165–2170 (2004)

    Google Scholar 

  12. Juang, J.G.: Intelligent Trajectory Control Using Recurrent Averaging Learning. Applied Artificial Intelligence 15, 277–297 (2001)

    Article  Google Scholar 

  13. Juang, J.G.: Intelligent Locomotion Control on Sloping Surfaces. Information Sciences 147, 229–243 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, New Jersey (1999)

    MATH  Google Scholar 

  15. Rajapakse, J.C., Wang, L.P. (eds.): Neural Information Processing: Research and Development. Springer, Berlin (2004)

    MATH  Google Scholar 

  16. Werbos, P.: Backpropagation Through Time: What It Does and How to Do It. Proceedings of the IEEE 78, 1550–1560 (1990)

    Article  Google Scholar 

  17. Furusho, J., Masubuchi, M.: Control of a Dynamical Biped Locomotion System for Steady Walking. Journal of Dynamic Systems, Measurement, and Control 108, 111–118 (1986)

    Article  MATH  Google Scholar 

  18. Kurematsu, Y., Kitamura, S., Kondo, Y.: Trajectory Planning and Control of a Biped Locomotive Robot -Simulation and Experiment. In: Jamshidi, M. (ed.) Robotics and Manufacturing. Recent Trends in Research, Education and Applications, pp. 65–72. ASME Press (1988)

    Google Scholar 

  19. Zheng, Y.F., Hemami, H.: Mathematical Modeling of a Robot Collision with its Environment. Journal of Robotic Systems 2, 289–307 (1985)

    Article  Google Scholar 

  20. Raibert, M., Tzafestas, S., Tzafestas, C.: Comparative Simulation Study of Three Control Techniques Applied to a Biped Robot. In: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 1, pp. 494–502 (1993)

    Google Scholar 

  21. Pars, L.A.: A Treatise on Analytical Dynamics, ch. 14. Heinemann Educational Books LTD, London (1965)

    Google Scholar 

  22. Hornik, K.: Some New Results on Neural Network Approximation. Neural Networks 6, 1069–1072 (1993)

    Article  Google Scholar 

  23. Funahashi, K.: On the Approximate Realization of Continuous Mapping by Neural Networks. Neural Networks 2, 183–192 (1989)

    Article  Google Scholar 

  24. Hornik, K., Stinchcombe, M., White, H.: Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural Networks 3, 551–560 (1990)

    Article  Google Scholar 

  25. Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks are Universal Approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  26. Hornik, K.: Approximation Capabilities of Multilayer Perceptrons. Neural Networks 4, 251–257 (1991)

    Article  Google Scholar 

  27. Kreinovich, V.: Abitrary Nonlinearity is Sufficient to Represent all Functions by Neural Networks: A Theorem. Neural Networks 4, 381–384 (1991)

    Article  Google Scholar 

  28. Ito, Y.: Approximation of Function on a Compact Set by Finite Sums of a Sigmoid Function without Scaling. Neural Networks 4, 385–394 (1991)

    Article  Google Scholar 

  29. Ito, Y.: Approximation of Continuous Functions on Rd by Linear Combinations of Shifted Rotations of a Sigmoid Function with and without Scaling. Neural Networks 5, 105–115 (1992)

    Article  Google Scholar 

  30. Murata, N., Yoshizawa, S., Amari, S.I.: Network Information Criterion-Determining the Number of Hidden Units for an Artificial Neural Network Model. IEEE Trans. Neural Networks. 5, 865–872 (1994)

    Article  Google Scholar 

  31. Kung, S.Y., Hwang, J.N.: Algebraic Projection Analysis for Optimal Hidden Units Size and Learning Rates in Back-Propagation Learning. In: Proc. IEEE Int. Conf. Neural Networks, vol. 1, pp. 363–370 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juang, JG. (2006). Effects of Using Different Neural Network Structures and Cost Functions in Locomotion Control. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_60

Download citation

  • DOI: https://doi.org/10.1007/11881070_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics