Rolling Bearings Fault Diagnosis Based on Adaptive Gaussian Chirplet Spectrogram and Independent Component Analysis

  • Haibin Yu
  • Qianjin Guo
  • Jingtao Hu
  • Aidong Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4221)


Condition monitoring of rolling element bearings through the use of vibration analysis is an established technique for detecting early stages of component degradation. The location dependent characteristic defect frequencies make it possible to detect the presence of a defect and to diagnose on what part of the bearing the defect is. The difficulty of localized defect detection lies in the fact that the energy of the signature of a defective bearing is spread across a wide frequency band and hence can be easily buried by noise. To solve this problem, the adaptive Gaussian chirplet distribution for an integrated time-frequency signature extraction of the machine vibration is developed; the method offers the advantage of good localization of the vibration signal energy in the time-frequency domain. Independent component analysis (ICA) is used for the redundancy reduction and feature extraction in the time-frequency domain, and the self-organizing map (SOM) was employed to identify the faults of the rolling element bearings. Experimental results show that the proposed method is very effective.


Independent Component Analysis Fault Diagnosis Vibration Signal Independent Component Analysis Blind Source Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu, H.B., Guo, Q.J., Xu, A.D.: A self-constructing compensatory fuzzy wavelet network and Its applications. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 743–755. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Guo, Q.J., Yu, H.B., Xu, A.D.: Hybrid PSO based wavelet neural networks for intelligent fault diagnosis. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 521–530. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bastiaans, M.J.: Gabor’expansion of a signal into Gaussian elementary signals. Proceedings of the IEEE 68, 538–539 (1980)CrossRefGoogle Scholar
  4. 4.
    Cohen, L.: Time-frequency distribution—a review. Proc. IEEE. 77, 941–981 (1989)CrossRefGoogle Scholar
  5. 5.
    Comon, P.: Independent component analysis—A new concept? Signal Processing 36, 287–314 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Hyvärinen, A.: Survey on independent component analysis. Neura Computing Surveys 2, 94–128 (1999)Google Scholar
  7. 7.
    Jutten, C., Herault, J.: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)MATHCrossRefGoogle Scholar
  8. 8.
    Hurri, J., Hyvärinen, A., et al.: Image feature extraction using independent component analysis. In: IEEE Nordic Signal Processing Symp., NORSIG 1996, pp. 475–478 (1996)Google Scholar
  9. 9.
    Amari, S., Cichocki, A.: Adaptive blind signal processing—Neural network approaches. Proc. IEEE 86, 2026–2048 (1998)CrossRefGoogle Scholar
  10. 10.
    Vigário, R.: Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. Clin. Neurophysiol. 103, 395–404 (1997)CrossRefGoogle Scholar
  11. 11.
    Torkkola, K.: Blind separation for audio signals: Are we there yet? In: The Int. Workshop on Independent Component Analysis and Blind Separation of Signals (ICA 1999), Aussois, France, pp. 239–244 (1999)Google Scholar
  12. 12.
    Kohonen, T.: Self-Organizing Maps, 3rd edn., pp. 138–140. Springer, Berlin, Germany (2001)MATHGoogle Scholar
  13. 13.
    Mann, Haykin, S.S.: The chirplet transform: Physical considerations. IEEE Trans. Signal Processing 43, 2461–2745 (1995)CrossRefGoogle Scholar
  14. 14.
    Gabor, D.: Theory of communication. J. Inst. Elect. Eng. 93, 429–457 (1946)Google Scholar
  15. 15.
    Mann, S., Haykin, S.: ‘Chirplets’ and ‘warblets’: Novel timefrequency methods. Electron. Lett. 28, 114–116 (1992)CrossRefGoogle Scholar
  16. 16.
    Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Processing 41, 3397–3415 (1993)MATHCrossRefGoogle Scholar
  17. 17.
    Qian, S., Chen, D.: Signal representation in adaptive Gaussian functions and adaptive spectrogram. In: Proc. Twenty-Seventh Annu. Conf. Inform. Sci. Syst., pp. 59–65 (1993)Google Scholar
  18. 18.
    Qian, S., Chen, D.: Signal representation using adaptive normalized Gaussian functions. Signal Process 36(1), 1–11 (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Yin, Q., Qian, S., Feng, A.: A fast refinement for adaptive Gaussian chirplet decomposition. IEEE Trans. Signal Processing 50(6), 1298–1306 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Gadhok, N., Kinsner, W.: Estimating outlier impact on. In: FastICA using fuzzy inference, Conference of the North American Fuzzy Information Processing Society–NAFIPS, pp. 832–837 (2004)Google Scholar
  21. 21.
    Hyvärinen, A., Karhunen, A.J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)CrossRefGoogle Scholar
  22. 22.
    Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Haibin Yu
    • 1
  • Qianjin Guo
    • 1
    • 2
  • Jingtao Hu
    • 1
  • Aidong Xu
    • 1
  1. 1.Shenyang Inst. of AutomationChinese Academy of SciencesLiaoningChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations