Simulating Bacterial Transcription and Translation in a Stochastic π Calculus

  • Céline Kuttler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4220)


Stochastic simulation of genetic networks based on models in the stochastic π-calculus is a promising recent approach. This paper contributes an extensible model of the central mechanisms of gene expression i.e. transcription and translation, at the prototypical instance of bacteria. We reach extensibility through object-oriented abstractions, that are expressible in a stochastic π-calculus with pattern guarded inputs. We illustrate our generic model by simulating the effect of translational bursting in bacterial gene expression.


Discrete Event Modeling Concurrent Object Bacterial Gene Expression Polycistronic mRna Stochastic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R., Block, S.M.: Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005)CrossRefGoogle Scholar
  2. 2.
    Adalsteinsson, D., McMillen, D., Elston, T.: Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5(1), 24 (2004)CrossRefGoogle Scholar
  3. 3.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)Google Scholar
  4. 4.
    Banerjee, S., Chalissery, J., Bandey, I., Sen, R.J.: Rho-dependent transcription termination: More questions than answers. Journal of Microbiology 44(1), 11–22 (2006)Google Scholar
  5. 5.
    Barnard, A., Wolfe, A., Busby, S.: Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology 7, 102–108 (2004)CrossRefGoogle Scholar
  6. 6.
    Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic dynamics of gene networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Transactions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939, pp. 99–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Brenner, S., Jacob, F., Meselson, M.: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L.: Brane calculi: interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Carpousis, A.J.: The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienzyme complexes. Biochemical Society Transactions 30(2), 150–154 (2002)CrossRefGoogle Scholar
  11. 11.
    Carrier, T.A., Keasling, J.D.: Mechanistic modeling of mRNA decay. Journal of Theoretical Biology 189, 195–209 (1997)CrossRefGoogle Scholar
  12. 12.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 24–44 (2004)Google Scholar
  13. 13.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dasika, M.S., Gupta, A., Maranas, C.D.: DEMSIM: a discrete event based mechanistic simulation platform for gene expression and regulation dynamics. Journal of Theoretical Biology 232(1), 55–69 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dennis, P.P., Ehrenberg, M., Bremer, H.: Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiology and Molecular Biology Reviews 68(4), 639–668 (2004)CrossRefGoogle Scholar
  17. 17.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138 (1971)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Duchier, D., Kuttler, C.: Biomolecular agents as multi-behavioural concurrent objects. In: Proceedings of the First International Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005). Electronic Notes in Theoretical Computer Science, vol. 150, pp. 31–49 (2006)Google Scholar
  19. 19.
    Elf, J., Ehrenberg, M.: What makes ribosome-mediated trascriptional attenuation sensitive to amino acid limitation? PLoS Computational Biology 1(1), 14–23 (2005)CrossRefGoogle Scholar
  20. 20.
    Alberts, B., et al.: Molecular Biology of the Cell. Garland Science (2002)Google Scholar
  21. 21.
    Frank, J., Agrawal, R.K.: A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000)CrossRefGoogle Scholar
  22. 22.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C.: Real-time kinetics of gene activity in individual bacteria. Cell 123(6), 1025–1036 (2005)CrossRefGoogle Scholar
  24. 24.
    Gowrishankar, J., Harinarayanan, R.: Why is transcription coupled to translation in bacteria? Molecular Microbiology 54(3), 598–603 (2004)CrossRefGoogle Scholar
  25. 25.
    Gros, F., Hiatt, H., Gilbert, W., Kurland, C.G., Risebrough, R.W., Watson, J.D.: Unstable ribonucleic acid revealed by pulse labeling of Escherichia coli. Nature 190, 581–585 (1961)CrossRefGoogle Scholar
  26. 26.
    Grunberg-Manago, M.: Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annual Reviews Genetics, 193–227 (1999)Google Scholar
  27. 27.
    Henkin, T.M.: Transcription termination control in bacteria. Current Opinion in Microbiology 3(2), 149–153 (2000)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Hsu, L.M.: Promoter clearance and escape in prokaryotes. Biochimica et Biophysica Acta 1577, 191–207 (2002)Google Scholar
  29. 29.
    Kaern, M., Blake, W.J., Collins, J.J.: The engineering of gene regulatory networks. Annual Review Biomedical Engineering 5, 179–206 (2003)CrossRefGoogle Scholar
  30. 30.
    Kaern, M., Elston, T., Blake, W., Collins, J.: Stochasticity in gene expression: from theories to phenotypes. Nature Reviews Genetics 6(6), 451–467 (2005)CrossRefGoogle Scholar
  31. 31.
    Kierzek, A.M.: STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)CrossRefGoogle Scholar
  32. 32.
    Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry 276, 8165–8172 (2001)CrossRefGoogle Scholar
  33. 33.
    Kobiler, O., Rokney, A., Friedman, N., Court, D.L., Stavans, J., Oppenheim, A.B.: Quantitative kinetic analysis of the bacteriophage λ genetic network. Proceedings of the National Academy of Sciences USA 102(12), 4470–4475 (2005)CrossRefGoogle Scholar
  34. 34.
    Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 24–55. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. Technical report, INRIA (2006)Google Scholar
  36. 36.
    Maciag, K., Altschuler, S.J., Slack, M.D., Krogan, N.J., Emili, A., Greenblatt, J.F., Maniatis, T., Wu, L.F.: Systems-level analyses identify extensive coupling among gene expression machines. Molecular Systems Biology (2006)Google Scholar
  37. 37.
    Maniatis, T., Need, R.: An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002)CrossRefGoogle Scholar
  38. 38.
    McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences USA 94, 814–819 (1997)CrossRefGoogle Scholar
  39. 39.
    McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annual Review Biochemistry 54, 171–204 (1985)CrossRefGoogle Scholar
  40. 40.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  41. 41.
    Milner, R.: What’s in a name? In: Computer Systems: Theory, Technology, and Applications. A tribute to Roger Needham. Monographs in Computer Science, pp. 205–211. Springer, Heidelberg (2004)Google Scholar
  42. 42.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (I and II). Information and Computation 100, 1–77 (1992)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Neufing, P.J., Shearwin, K.E., Egan, J.B.: Establishing lysogenic transcription in the temperate coliphage 186. Journal of Bacteriology 183(7), 2376–2379 (2001)CrossRefGoogle Scholar
  44. 44.
    Orphanides, G., Reinberg, D.: A unified theory of gene expression. Cell 108, 439–451 (2002)CrossRefGoogle Scholar
  45. 45.
    Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A., van Oudenaarden, A.D.: Regulation of noise in the expression of a single gene. Nature Genetics 31, 69–73 (2002)CrossRefGoogle Scholar
  46. 46.
    Paul, B.J., Ross, W., Gaal, T., Gourse, R.L.: rRNA transcription in E. Coli. Annual Review Genetics 38, 749–770 (2004)CrossRefGoogle Scholar
  47. 47.
    Paulino, H., Marques, P., Lopes, L., Vasconcelos, V.T., Silva, F.: A multi-threaded asynchronous language. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 316–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  48. 48.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Transactions on Computational Systems Biology, Special issue of BioConcur 2004 (in press)Google Scholar
  49. 49.
    Prandi, D., Priami, C., Quaglia, P.: Process calculi in a biological context. Bulletin of the EATCS 85, 53–69 (2005)MATHMathSciNetGoogle Scholar
  50. 50.
    Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)CrossRefGoogle Scholar
  51. 51.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  52. 52.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor Laboratory Press (2004)Google Scholar
  54. 54.
    Ptashne, M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory Press (2002)Google Scholar
  55. 55.
    Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. Journal of Bioinformatics and Computational Biology 3(2), 415–436 (2005)CrossRefGoogle Scholar
  56. 56.
    Raser, J.M., O’Shea, E.K.: Noise in Gene Expression: Origins, Consequences, and Control. Science 309(5743), 2010–2013 (2005)CrossRefGoogle Scholar
  57. 57.
    Ravara, A., Vasconcelos, V.T.: Typing non-uniform concurrent objects. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 474–488. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  58. 58.
    Ray, P.N., Pearson, M.L.: Evidence for post-transcriptional control of the morphogenetic genes of bacteriophage lambda. Journal Molecular Biology 85(1), 163–175 (1974)CrossRefGoogle Scholar
  59. 59.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  60. 60.
    Regonesi, M.E., Favero, M.D., Basilico, F., Briani, F., Benazzi, L., Tortora, P., Mauri, P., Deho, G.: Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88(2), 151–161 (2006)CrossRefGoogle Scholar
  61. 61.
    Sarjoughian, H.S., Cellier, F.E. (eds.): Discrete Event Modeling and Simulation Technologies: A Tapestry of Systems and AI-based Theories and Methodologies. Springer, New York (2001)MATHGoogle Scholar
  62. 62.
    Schmeissner, U., Court, D., Shimatake, H., Rosenberg, M.: Promoter for the establishment of repressor synthesis in bacteriophage lambda. Proceedings of the National Academy of Sciences USA 77(6), 3191–3195 (1980)CrossRefGoogle Scholar
  63. 63.
    Shea, M., Ackers, G.K.: The O R control system of bacteriophage lambda: A physical-chemical model for gene regulation. Molecular Biology 181, 211–230 (1985)CrossRefGoogle Scholar
  64. 64.
    Shearwin, K.W., Callen, B.P., Egan, J.B.: Transcriptional interference - a crash course. Trends in Genetics 21, 339–345 (2005)CrossRefGoogle Scholar
  65. 65.
    Sneppen, K., Zocchi, G.: Physics in Molecular Biology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  66. 66.
    Steege, D.A.: Emerging features of mRNA decay in bacteria. RNA 6(8), 1079–1090 (2000)CrossRefGoogle Scholar
  67. 67.
    Swain, P.S.: Efficient attenuation of stochasticity in gene expression through post-transcriptional control. Journal of Molecular Biology 344, 965–976 (2004)CrossRefGoogle Scholar
  68. 68.
    Vasconcelos, V.T., Tokoro, M.: A typing system for a calculus of objects. In: Veni Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 460–474. Springer, Heidelberg (1990)Google Scholar
  69. 69.
    Voit, E.O.: Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000)Google Scholar
  70. 70.
    von Heijne, G., Nilsson, L., Blomberg, C.: Translation and messenger RNA secondary structure. Journal of Theoretical Biology 68, 321–329 (1977)CrossRefGoogle Scholar
  71. 71.
    Wagner, R.: Transcription Regulation in Prokaryotes. Oxford University Press, Oxford (2000)Google Scholar
  72. 72.
    Yanofsky, C.: Trancription attenuation. Journal Biological Chemistry, 609–612 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Céline Kuttler
    • 1
  1. 1.Interdisciplinary Research Institute and LIFLLilleFrance

Personalised recommendations