Cooperation, Conceptual Spaces and the Evolution of Semantics

  • Peter Gärdenfors
  • Massimo Warglien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4211)


We start by providing an evolutionary scenario for the emergence of semantics. It is argued that the evolution of anticipatory cognition and theory of mind in the hominids opened up for cooperation about future goals. This cooperation requires symbolic communication. The meanings of the symbols are established via a “meeting of minds.” The concepts in the minds of communicating individuals are modelled as convex regions in conceptual spaces. We then outline a mathematical framework based on fixpoints in continuous mappings between conceptual spaces that can be used to model such a semantics.


Colour Space Image Schema Conceptual Space Future Goal Voronoi Tessellation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winter, S.: Expectations and Linguistic Meaning. Lund University Cognitive Studies 71, Lund (1998)Google Scholar
  2. 2.
    Gärdenfors, P.: How Homo Became Sapiens: On the Evolution of Thinking. Oxford University Press, Oxford (2003)Google Scholar
  3. 3.
    Dennett, D.: Consciousness Explained. Little, Brown and Company, Boston (1991)Google Scholar
  4. 4.
    Tomasello, M.: The Cultural Origins of Human Cognition. Harvard Unversity Press, Cambridge (1999)Google Scholar
  5. 5.
    Harnad, S.: The Symbol Grounding Problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  6. 6.
    Hurford, J.: The Evolution of Language and Languages. In: Dunbar, R., Knight, C., Power, C. (eds.) The Evolution of Culture, pp. 173–193. Edinburgh University Press, Edinburgh (1999)Google Scholar
  7. 7.
    Kirby, S.: Function, Selection and Innateness: The Emergence of Language Univerals. Oxford University Press, Oxford (1999)Google Scholar
  8. 8.
    Steels, L.: The Talking Heads Experiment. Laboratorium, Antwerp (1999)Google Scholar
  9. 9.
    Steels, L.: Social and Cultural Learning in the Evolution of Human Communication. In: Oller, K., Griebel, U. (eds.) The Evolution of Communication Systems, pp. 69–90. MIT Press, Cambridge (2004)Google Scholar
  10. 10.
    Kaplan, F.: L’émergence d’un lexique dans une population d’agents autonomes. Ph. D. Thesis. Laboratoire d’Informatique de Paris 6, Paris (2000)Google Scholar
  11. 11.
    Vogt, P.: Bootstrapping Grounded Symbols by Minimal Autonomous Robots. Evol. of Comm. 4, 89–118 (2000)Google Scholar
  12. 12.
    Vogt, P.: The Emergence of Compositional Structures in Perceptually Grounded Language Games. Artif. Intell. 167, 206–242 (2005)CrossRefGoogle Scholar
  13. 13.
    Bischof, N.: On the Phylogeny of Human Morality. In: Stent, G. (ed.) Morality as a Biological Phenomenon, pp. 53–74. Abako, Berlin (1978)Google Scholar
  14. 14.
    Bischof-Köhler, D.: Zur Phylogenese menschlicher Motivation. In: Eckensberger, L.H., Lantermann, E.D. (eds.) Emotion und Reflexivität, pp. 3–47. Urban & Schwarzenberg, Vienna (1985)Google Scholar
  15. 15.
    Gulz, A.: The Planning of Action as a Cognitive and Biological Phenomenon. Lund University Cognitive Studies 2, Lund (1991)Google Scholar
  16. 16.
    Suddendorf, T., Corballis, M.C.: Mental Time Travel and the Evolution of Human Mind. Genetic, Social and General Psychology Monographs 123, 133–167 (1997)Google Scholar
  17. 17.
    Mulcahy, N.J., Call, J.: Apes Save Tools for Future Use. Science 312, 1038–1040 (2006)CrossRefGoogle Scholar
  18. 18.
    Osvath, M., Gärdenfors, P.: Oldowan Culture and the Evolution of Anticipatory Cognition, Lund University Cognitive Studies 121, Lund (2005)Google Scholar
  19. 19.
    Tulving, E.: How Many Memory Systems are There? Am. Psychologist 40, 385–398 (1985)CrossRefGoogle Scholar
  20. 20.
    Suddendorf, T., Busby, J.: Mental Time Travel in Animals? Trends in Cog. Sci. 7, 391–396 (2003)CrossRefGoogle Scholar
  21. 21.
    Savage-Rumbaugh, E.S.: Hominin Evolution: Looking to Modern Apes for Clues. In: Quiatt, D., Itani, J. (eds.) Hominin Culture in Primate Perspective, pp. 7–49. University Press of Colorado, Niwot (1994)Google Scholar
  22. 22.
    Plummer, T.: Flaked Stones and Old Bones: Biological and Cultural Evolution at the Dawn of Technology. Yearbook of Phys. Anthrop. 47, 118–164 (2004)CrossRefGoogle Scholar
  23. 23.
    Brinck, I., Gärdenfors, P.: Co-operation and Communication in Apes and Humans. Mind and Lang. 18, 484–501 (2003)Google Scholar
  24. 24.
    Gärdenfors, P.: Cooperation and the Evolution of Symbolic Communication. In: Oller, K., Griebel, U. (eds.) The Evolution of Communication Systems, pp. 237–256. MIT Press, Cambridge (2004)Google Scholar
  25. 25.
    Tomasello, M.: On the Different Origins of Symbols and Grammar. In: Christansen, M.H., Kirby, S. (eds.) Language Evolution, pp. 94–110. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  26. 26.
    Peirce, C.S.: The Collected Papers of Charles Saunders Peirce, vol. 1-4. Harvard University Press, Cambridge (1931-1935)Google Scholar
  27. 27.
    Zlatev, J., Persson, T., Gärdenfors, P.: Bodily Mimesis as the “Missing Link” in Human Cognitive Evolution. Lund University Cognitive Studies 121, Lund (2005)Google Scholar
  28. 28.
    Deacon, T.W.: The Symbolic Species. Penguin Books, London (1997)Google Scholar
  29. 29.
    Langacker, R.W.: Foundations of Cognitive Grammar, vol. 1. Stanford University Press, Stanford (1987)Google Scholar
  30. 30.
    Lakoff, G.: Women, Fire, and Dangerous Things. The University of Chicago Press, Chicago (1987)Google Scholar
  31. 31.
    Talmy, L.: Force Dynamics in Language and Cognition. Cognitive Science 12, 49–100 (1988)CrossRefGoogle Scholar
  32. 32.
    Freyd, J.: Shareability: The Social Psychology of Epistemology. Cognitive Science 7, 191–210 (1983)CrossRefGoogle Scholar
  33. 33.
    Fitting, M.: Fixpoint Semantics for Logic Programming: A Survey. Theor. Comput. Sci. 278, 25–51 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Kripke, S.: Outline of a Theory of Truth. J. of Phil. 72, 690–716 (1975)CrossRefGoogle Scholar
  35. 35.
    Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Nat. Acad. of Sci. 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Lewis, D.: Convention. Harvard University Press, Cambridge (1969)Google Scholar
  37. 37.
    Stalnaker, R.: Assertion. Syntax and Semantics 9, 315–332 (1979)Google Scholar
  38. 38.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  39. 39.
    Gallistel, C.R.: The Organization of Learning. MIT Press, Cambridge (1990)Google Scholar
  40. 40.
    Hornik, K., Stinchombe, H., White, H.: Multilayer Feedforward Networks are Universal Approximators. Neural Networks 2, 359–366 (1989)CrossRefGoogle Scholar
  41. 41.
    Rosch, E.: Cognitive Representations of Semantic Categories. J. of Exp. Psych.: General 104, 192–233 (1975)CrossRefGoogle Scholar
  42. 42.
    Rosch, E.: Prototype Classification and Logical Classification: The Two Systems. In: Scholnik, E. (ed.) New Trends in Cognitive Representation: Challenges to Piaget’s Theory, pp. 73–86. Lawrence Erlbaum Associates, Hillsdale (1978)Google Scholar
  43. 43.
    Mervis, C., Rosch, E.: Categorization of Natural Objects. Ann. Rev. of Psychol. 32, 89–115 (1981)CrossRefGoogle Scholar
  44. 44.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, New York (1992)zbMATHGoogle Scholar
  45. 45.
    Brouwer, L.E.J.: Über ein eindeutige, stetige Transformation von Flächen in sich. Mathematische Annalen blz. 69, 176–180 (1910)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Jäger, G., van Rooij, R.: Language Structure: Psychological and Social constraints, Synthese (to appear)Google Scholar
  47. 47.
    Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)Google Scholar
  48. 48.
    Marchiori, D., Warglien, M.: Constructing Shared Interpretations in a Team of Intelligent Agents: The Effects of Communication Intensity and Structure. In: Terano, T., Kita, H., Kaneda, T., Arai, K., Deguchi, H. (eds.) Agent-Based Simulation: From Modeling Methodologies to Real-World Applications, Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Gärdenfors
    • 1
  • Massimo Warglien
    • 2
  1. 1.Lund University Cognitive Science, KungshusetLundSweden
  2. 2.Department of Business EconomicsCa’ Foscari UniversitàVeneziaItaly

Personalised recommendations