FIRE in ImageCLEF 2005: Combining Content-Based Image Retrieval with Textual Information Retrieval

  • Thomas Deselaers
  • Tobias Weyand
  • Daniel Keysers
  • Wolfgang Macherey
  • Hermann Ney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4022)


In this paper the methods we used in the 2005 ImageCLEF content-based image retrieval evaluation are described. For the medical retrieval task, we combined several low-level image features with textual information retrieval. Combining these two information sources, clear improvements over the use of one of these sources alone are possible.

Additionally we participated in the automatic annotation task, where our content-based image retrieval system, FIRE, was used as well as a second subimage based method for object classification. The results we achieved are very convincing. Our submissions ranked first and the third in the automatic annotation task out of a total of 44 submissions from 12 groups.


Image Retrieval Textual Information Query Image Image Patch Relevance Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller, H., Geissbühler, A.: How to Visually Retrieve Images From the St. Andrews Collection Using GIFT. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 633–642. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Lin, W.C., Chang, Y.C., Chen, H.H.: From Text to Image: Generating Visual Query for Image Retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 664–675. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Alvarez, C., Oumohmed, A.I., Mignotte, M., Nie, J.Y.: Toward Cross-Language and Cross-Media Image Retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 676–687. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Clough, P., Mueller, H., Deselaers, T., Grubinger, M., Lehmann, T., Jensen, J., Hersh, W.: The CLEF 2005 Cross–Language Image Retrieval Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Macherey, W., Viechtbauer, H.J., Ney, H.: Probabilistic Aspects in Spoken Document Retrieval. EURASIP Journal on Applied Signal Processing Special Issue on Unstructured Information Management from Multimedia Data Sources (2), 1–12 (2003)Google Scholar
  6. 6.
    Porter, M.F.: An Algorithm for Suffix Stripping. Morgan Kaufmann, San Francisco (1980)Google Scholar
  7. 7.
    Choi, J., Hindle, D., Hirschberg, J., Magrin-Changnolleau, I., Nakatani, C., Pereira, F., Singhal, A., Whittaker, S.: An Overview of the At&T Spoken Document Retrieval. In: Proc. 1998 DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne, Va, USA, pp. 182–188 (1998)Google Scholar
  8. 8.
    Keysers, D., Gollan, C., Ney, H.: Classification of medical images using non-linear distortion models, In: Bildverarbeitung für die Medizin, Berlin, Germany, pp. 366–370 (2004)Google Scholar
  9. 9.
    Keysers, D., Gollan, C., Ney, H.: Local Context in Non-Linear Deformation Models for Handwritten Character Recognition. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 4, pp. 511–514 (2004)Google Scholar
  10. 10.
    Keysers, D., Macherey, W., Ney, H., Dahmen, J.: Adaptation in Statistical Pattern Recognition Using Tangent Vectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 269–274 (2004)CrossRefGoogle Scholar
  11. 11.
    Deselaers, T.: Features for Image Retrieval. Diploma thesis, Lehrstuhl für Informatik VI, RWTH Aachen University, Aachen, Germany (2003)Google Scholar
  12. 12.
    Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical Evaluation of Dissimilarity Measures for Color and Texture. In: International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 1165–1173 (1999)Google Scholar
  13. 13.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval: The End of the Early Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  14. 14.
    Tamura, H., Mori, S., Yamawaki, T.: Textural Features Corresponding to Visual Perception. IEEE Transaction on Systems, Man, and Cybernetics 8(6), 460–472 (1978)CrossRefGoogle Scholar
  15. 15.
    Haberäcker, P.: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Carl Hanser Verlag, München, Wien (1995)Google Scholar
  16. 16.
    Haralick, R.M., Shanmugam, B., Dinstein, I.: Texture Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  17. 17.
    Gu, Z.Q., Duncan, C.N., Renshaw, E., Mugglestone, M.A., Cowan, C.F.N., Grant, P.M.: Comparison of Techniques for Measuring Cloud Texture in Remotely Sensed Satellite Meteorological Image Data. Radar and Signal Processing 136(5), 236–248 (1989)CrossRefGoogle Scholar
  18. 18.
    Siggelkow, S.: Feature Histograms for Content-Based Image Retrieval. PhD thesis, University of Freiburg, Institute for Computer Science, Freiburg, Germany (2002)Google Scholar
  19. 19.
    Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: A Quantitative Comparison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Lehmann, T.M., Güld, M.O., Deselaers, T., Keysers, D., Schubert, H., Spitzer, K., Ney, H., Wein, B.: Automatic Categorization of Medical Images for Content-Based Retrieval and Data Mining. Computerized Medical Imaging and Graphics 29 (iin press, 2005)Google Scholar
  21. 21.
    Deselaers, T., Keysers, D., Ney, H.: Discriminative Training for Object Recognition Using Image Patches. In: CVPR 2005, San Diego, CA, vol. 2, pp. 157–162 (2005)Google Scholar
  22. 22.
    Deselaers, T., Keysers, D., Ney, H.: Improving a Discriminative Approach to Object Recognition Using Image Patches. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 326–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Fergus, R., Perona, P., Zissermann, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: Conference on Computer Vision and Pattern Recognition, Blacksburg, VG, pp. 264–271 (2003)Google Scholar
  24. 24.
    Dreuw, P., Keysers, D., Deselaers, T., Ney, H.: Gesture Recognition Using Image Comparison Methods. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 124–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Everingham, M., Gool, L.V., Williams, C., Zisserman, A.: Pascal Visual Object Classes Challenge Results. Technical report, University of Oxford, Oxford, UK (2005)Google Scholar
  26. 26.
    Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random Subwindows for Robust Image Classification. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 1, pp. 34–40. IEEE, Los Alamitos (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Deselaers
    • 1
  • Tobias Weyand
    • 1
  • Daniel Keysers
    • 1
  • Wolfgang Macherey
    • 1
  • Hermann Ney
    • 1
  1. 1.Lehrstuhl für Informatik VIRWTH Aachen UniversityAachenGermany

Personalised recommendations