ENSM-SE at CLEF 2005: Using a Fuzzy Proximity Matching Function

  • Annabelle Mercier
  • Amélie Imafouo
  • Michel Beigbeder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4022)


Starting from the idea that the closer the query terms in a document are to each other the more relevant the document, we propose an information retrieval method that uses the degree of fuzzy proximity of key terms in a document to compute the relevance of the document to the query. Our model handles Boolean queries but, contrary to the traditional extensions of the basic Boolean information retrieval model, does not use a proximity operator explicitly. A single parameter makes it possible to control the proximity degree required. We explain how we construct the queries and report the results of our experiments in the ad-hoc monolingual French task of the CLEF 2005 evaluation campaign.


Information Retrieval Boolean Model Proximity Operator Query Tree Information Retrieval Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)Google Scholar
  2. 2.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Book Company, New York (1983)MATHGoogle Scholar
  3. 3.
    Keen, E.M.: Some aspects of proximity searching in text retrieval systems. Journal of Information Science 18, 89–98 (1992)CrossRefGoogle Scholar
  4. 4.
    Clarke, C.L.A., Cormack, G.V., Tudhope, E.A.: Relevance ranking for one to three term queries. Information Processing and Management 36(2), 291–311 (2000)CrossRefGoogle Scholar
  5. 5.
    Hawking, D., Thistlewaite, P.: Proximity operators - so near and yet so far. In: Harman, D.K. (ed.) The Fourth Text REtrieval Conference (TREC-4), Department of Commerce, National Institute of Standards and Technology, pp. 131–143 (1995)Google Scholar
  6. 6.
    Rasolofo, Y., Savoy, J.: Term Proximity Scoring for Keyword-Based Retrieval Systems. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 207–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Wilkinson, R.: Effective retrieval of structured documents. In: SIGIR 1994, Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 311–317. Springer, New York (1994)Google Scholar
  8. 8.
    de Kretser, O., Moffat, A.: Effective document presentation with a locality-based similarity heuristic. In: SIGIR 1999: Proceedings of the 22nd ACM SIGIR Annual International Conference on Research and Development in Information Retrieval, pp. 113–120. ACM, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Kise, K., Junker, M., Dengel, A., Matsumoto, K.: Passage Retrieval Based on Density Distributions of Terms and Its Applications to Document Retrieval and Question Answering. In: Dengel, A., Junker, M., Weisbecker, A. (eds.) Reading and Learning. LNCS, vol. 2956, pp. 306–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi at trec-3. In: Harman, D.K. (ed.) Overview of the Third Text REtrieval Conference (TREC-3), Department of Commerce, National Institute of Standards and Technology, pp. 109–126 (1994)Google Scholar
  11. 11.
    Mercier, A.: Étude comparative de trois approches utilisant la proximité entre les termes de la requête pour le calcul des scores des documents. In: INFORSID 2004, pp. 95–106 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Annabelle Mercier
    • 1
  • Amélie Imafouo
    • 1
  • Michel Beigbeder
    • 1
  1. 1.École Nationale Supérieure des Mines de Saint-ÉtienneSaint-EtienneFrance

Personalised recommendations