Skip to main content

Exploring New Languages with HAIRCUT at CLEF 2005

  • Conference paper
Accessing Multilingual Information Repositories (CLEF 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4022))

Included in the following conference series:


JHU/APL has long espoused the use of language-neutral methods for cross-language information retrieval. This year we participated in the ad hoc cross-language track and submitted both monolingual and bilingual runs. We undertook our first investigations in the Bulgarian and Hungarian languages. In our bilingual experiments we used several non-traditional CLEF query languages such as Greek, Hungarian, and Indonesian, in addition to several western European languages. We found that character n-grams remain an attractive option for representing documents and queries in these new languages. In our monolingual tests n-grams were more effective than unnormalized words for retrieval in Bulgarian (+30%) and Hungarian (+63%). Our bilingual runs made use of subword translation, statistical translation of character n-grams using aligned corpora, when parallel data were available, and web-based machine translation, when no suitable data could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Cavnar, W.B., Trenkle, J.M.: N-Gram Based Text Categorization. In: Proceedings of the Third Symposium on Document Analysis and Information Retrieval, pp. 161–169 (1994)

    Google Scholar 

  2. Church, K.W.: Char_align: A program for aligning parallel texts at the character level. In: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pp. 1–8 (1993)

    Google Scholar 

  3. Damashek, M.: Gauging Similarity with n-grams: Language-Independent Categorization of Text. Science 267, 843–848 (1995)

    Article  Google Scholar 

  4. Hiemstra, D.: Using Language Models for Information Retrieval. Ph. D. Thesis, Center for Telematics and Information Technology, The Netherlands (2000)

    Google Scholar 

  5. Jelinek, F., Mercer, R.: Interpolated Estimation of Markov Source Parameters from Sparse Data. In: Gelsema, E.S., Kanal, L.N. (eds.) Pattern Recognition in Practice, pp. 381–402. North-Holland, Amsterdam (1980)

    Google Scholar 

  6. Koehn, P.: Europarl: A multilingual corpus for evaluation of machine translation (unpublished)

  7. Mayfield, J., McNamee, P., Piatko, C.: The JHU/APL HAIRCUT System at TREC-8. In: Voorhees, E., Harman, D. (eds.) Proceedings of the Eighth Text REtrieval Conference (TREC-8), NIST Special Publication, Gaithersburg, Maryland, pp. 500–246 (2000)

    Google Scholar 

  8. Mayfield, J., McNamee, P.: Single N-gram Stemming. In: Proceedings of the 26th Annual International Conference on Research and Development in Information Retrieval (SIGIR 2003), Toronto, Ontario, pp. 415–416 (July 2003)

    Google Scholar 

  9. McNamee, P., Mayfield, J.: JHU/APL Experiments in Tokenization and Non-Word Translation. In: Working Notes of the CLEF 2003 Workshop, pp. 19-28 (2003)

    Google Scholar 

  10. McNamee, P., Mayfield, J.: Character N-gram Tokenization for European Language Text Retrieval. Information Retrieval 7(1-2), 73–97 (2004)

    Article  Google Scholar 

  11. McNamee, P., Mayfield, J.: Translating Pieces of Words. In: Proceedings of the 28th Annual International Conference on Research and Development in Information Retrieval (SIGIR 2005), Salvador, Brazil, pp. 643–644 (August 2005)

    Google Scholar 

  12. Mihalcea, R., Nastase, V.: Letter Level Learning for Language Independent Diacritics Restoration. In: Proceedings of the 6th Conference on Natural Language Learning (CoNLL 2002), pp. 105–111 (2002)

    Google Scholar 

  13. Pirkola, A., Hedlund, T., Keskusalo, H., Järvelin, K.: Dictionary-Based Cross-Language Information Retrieval: Problems, Methods, and Research Findings. Information Retrieval 4, 209–230 (2001)

    Article  MATH  Google Scholar 

  14. Ponte, J.M., Croft, W.B.: A Language Modeling Approach to Information Retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, pp. 275–281 (1998)

    Google Scholar 

  15. Zamora, E.M., Pollock, J.J., Zamora, A.: The Use of Trigram Analysis for Spelling Error Detection. Information Processing and Management 17, 305–316 (1981)

    Article  Google Scholar 


Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McNamee, P. (2006). Exploring New Languages with HAIRCUT at CLEF 2005. In: Peters, C., et al. Accessing Multilingual Information Repositories. CLEF 2005. Lecture Notes in Computer Science, vol 4022. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45697-1

  • Online ISBN: 978-3-540-45700-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics