Advertisement

Automatic Semantic Activity Monitoring of Distance Learners Guided by Pedagogical Scenarios

  • Viviane Guéraud
  • Jean-Michel Cagnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4227)

Abstract

This paper describes how we propose to assist trainers in their tasks of monitoring a distant group, in the context of learning situations exploiting interactive learning objects (simulations, micro-worlds...). We describe the conceptual model on which we base the monitoring of such learning situations. A scenario, created by the trainer, describes the goal proposed and the various controls to be made during the learner’s progression toward this goal. Our tools automatically use the scenario to control the learning object, to monitor the learners’ activities and to provide tutors with semantic and synthetic representations of these activities. We also provide automatic assistance to learners. The context of this work is the FORMID project, which has resulted in a computer platform implementing our proposals.

Keywords

Learn Management System Synthetic Representation Distance Training Pedagogical Scenario Validation Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgos, D., Tattersall, C., Koper, R.: Re-purposing existing generic games and simulations for e-learning, Open University of the Netherlands (November 2005), OUNL Dspace Service, http://hdl.handle.net/1820/508
  2. 2.
    Chaffar, S., Frasson, C.: Inducing Optimal Emotional State for Learning in Intelligent Tutoring Systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 45–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Conati, C., Maclare, H.: Evaluating a Probabilistic Model of Student Affect. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 55–66. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cortés, G., Guéraud, V.: Experimentation of an authoring tool for pedagogical simulations. In: International Conference CALISCE 1998, Göteborg, Sweden (1998)Google Scholar
  5. 5.
    Després, C.: Synchronous Tutoring in Distance Learning: A model for the synchronous pedagogical monitoring of distance learning activities. In: Artificial Intelligence in Education (AIED 2003), pp. 271–278. IOS Press, Amsterdam (2003)Google Scholar
  6. 6.
    George, S., Leroux, P.: An Approach to Automatic Analysis of Learners’ Social Behavior During Computer-Mediated Synchronous Conversations. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 630–640. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gerosa, M.A., Pimentel, M.G., Fuks, H., Lucena, C.: Analysing Discourse Structure to Coordinate Educational Forums. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 262–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Guéraud, V., Pernin, J.-P., Cagnat, J.-M., Cortés, G.: Environnements d’apprentissage basés sur la simulation: outils-auteur et expérimentations. Revue Sciences et Techniques Educatives 6(1), 95–141 (1999)Google Scholar
  9. 9.
    Guéraud, V., Adam, J.-M., Pernin, J.-P., Calvary, G., David, J.-P.: L’exploitation d’Objets Pédagogiques Interactifs à distance: le projet FORMID. In: Revue STICEF, vol. 11, pp. 109–164 (2004), www.sticef.org ISSN: 1764-7223
  10. 10.
    Mabbott, A., Bull, S.: Alternative Views on knowledge: Presentation of Open Learner Models. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 689–698. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mazza, R., Dimitrova, V.: CourseVis: Externalising Student Information to facilitate Instructors in Distant Learning. In: Hoppe, U., Verdejo, F., Kay, J. (eds.) Artificial Intelligence in Education, AIED 2003, pp. 279–286. IOS Press, Amsterdam (2003)Google Scholar
  12. 12.
    Mbala, A., Reffay, C., Chanier, T.: Integration of Automatic Tools for Displaying Interaction Data in Computer Environments for Distance Learning. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 841–850. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Merceron, A., Yacef, K.: A Web-Based Tutoring Tool with Mining Facilities to Improve Learning ant Teaching. In: Hoppe, U., Verdejo, F., Kay, J. (eds.) Artificial Intelligence in Education, AIED 2003, pp. 279–286. IOS Press, Amsterdam (2003)Google Scholar
  14. 14.
    Vieira, A.C., Teixeira, L., Timoteo, A., Tedesco, P., Barros, F.: Analysing Online Collaborative Dialogues. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 315–324. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Viviane Guéraud
    • 1
  • Jean-Michel Cagnat
    • 1
  1. 1.CLIPS – IMAG LaboratoryARCADE TeamGrenobleFrance

Personalised recommendations