Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients

  • Wouter Meuleman
  • Monique C. M. Welten
  • Fons J. Verbeek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4216)


The construction of gene regulatory models from microarray time-series data has received much attention. Here we propose a method that extends standard correlation networks to incorporate explicit time-slices. The method is applied to a time-series dataset of a study on gene expression in the developmental phase of zebrafish. Results show that the method is able to distinguish real relations between genes from the data. These relations are explicitly placed in time, allowing for a better understanding of gene regulation. The method and data normalisation procedure have been implemented using the R statistical language and are available from .


Partial Correlation Dynamic Bayesian Network Correlation Network Indirect Relation Model Building Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, X., Ye, Y., Subramanian, K.: Interactive analysis of gene interactions using graphical Gaussian model. In: ACM SIGKDD Workshop on Data Mining in Bioinformatics, vol. 3, pp. 63–69 (2003)Google Scholar
  2. 2.
    Schfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754–764 (2005)CrossRefGoogle Scholar
  3. 3.
    Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)CrossRefGoogle Scholar
  4. 4.
    Kellam, P., Liu, X., Martin, N., Orengo, C., Swift, S., Tucker, A.: A framework for modelling virus gene expression data. Intelligent Data Analysis 6(3), 267–279 (2002)MATHGoogle Scholar
  5. 5.
    Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 4(3), 228–235 (2003)CrossRefGoogle Scholar
  6. 6.
    Chickering, D., Geiger, D., Heckerman, D.: Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research (1994)Google Scholar
  7. 7.
    Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)CrossRefGoogle Scholar
  8. 8.
    Hill, A.: The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965)Google Scholar
  9. 9.
    Phillips, C., Goodman, K.: The missed lessons of Sir Austin Bradford Hill. Epidemiologic Perspectives & Innovations 1(3) (2004)Google Scholar
  10. 10.
    Linney, E., Dobbs-McAuliffe, B., Sajadi, H., Malek, R.L.: Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp. Biochem. Physiol. C. Toxicol Pharmacol. 138(3), 351–362 (2004)CrossRefGoogle Scholar
  11. 11.
    Wit, E., McClure, J.: Statistics for microarrays: design, analysis and inference. John Wiley & Sons Ltd., Chichester (2004)MATHGoogle Scholar
  12. 12.
    Pavlidis, P.: Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31(4), 282–289 (2003)CrossRefGoogle Scholar
  13. 13.
    Duboule, D.: The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution. Bioessays 14(6), 375–384 (1992)CrossRefGoogle Scholar
  14. 14.
    Krumlauf, R.: Hox genes in vertebrate development. Cell 78(2), 191–201 (1994)CrossRefGoogle Scholar
  15. 15.
    Prince, V.E., Moens, C.B., Kimmel, C.B., Ho, R.K.: Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125(3), 393–406 (1998)Google Scholar
  16. 16.
    Thummel, R., Li, L., Tanase, C., Sarras, M.P., Godwin, A.R.: Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev. Biol. 274(2), 318–333 (2004)CrossRefGoogle Scholar
  17. 17.
    Prince, V.E., Joly, L., Ekker, M., Ho, R.K.: Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125(3), 407–420 (1998)Google Scholar
  18. 18.
    Bel-Vialar, S., Itasaki, N., Krumlauf, R.: Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129(22), 5103–5115 (2002)Google Scholar
  19. 19.
    Forlani, S., Lawson, K.A., Deschamps, J.: Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130(16), 3807–3819 (2003)CrossRefGoogle Scholar
  20. 20.
    Gaunt, S.J., Strachan, L.: Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev. Dyn. 207(3), 270–280 (1996)CrossRefGoogle Scholar
  21. 21.
    Duboule, D., Doll, P.: The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 8(5), 1497–1505 (1989)Google Scholar
  22. 22.
    Graham, A., Papalopulu, N., Krumlauf, R.: The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57(3), 367–378 (1989)CrossRefGoogle Scholar
  23. 23.
    Duboule, D.: Vertebrate hox gene regulation: clustering and/or colinearity? Curr. Opin. Genet. Dev. 8(5), 514–518 (1998)CrossRefGoogle Scholar
  24. 24.
    Kmita, M., Duboule, D.: Organizing axes in time and space; 25 years of colinear tinkering. Science 301(5631), 331–333 (2003)CrossRefGoogle Scholar
  25. 25.
    de la Fuente, A., Bing, N., Hoeschele, I., Mendes, P.: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18), 3565–3574 (2004)CrossRefGoogle Scholar
  26. 26.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995)CrossRefGoogle Scholar
  27. 27.
    Verbeek, F.J., Lawson, K.A., Bard, J.B.: Developmental bioinformatics: linking genetic data to virtual embryos. Int. J. Dev. Biol. 43(7), 761–771 (1999)Google Scholar
  28. 28.
    Welten, M., De Haan, S., Bertens, L., Noordermeer, J., Lamers, G., Spaink, H., Meijer, A., Verbeek, F.: ZebraFISH: Fluorescent in situ hybridization protocol and 3D images of gene expression patterns. Zebrafish (accepted, 2006)Google Scholar
  29. 29.
    Knosp, W.M., Scott, V., Bchinger, H.P., Stadler, H.S.: HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis. Development 131(18), 4581–4592 (2004)CrossRefGoogle Scholar
  30. 30.
    Sakaguchi, S., Nakatani, Y., Takamatsu, N., Hori, H., Kawakami, A., Inohaya, K., Kudo, A.: Medaka unextended-fin mutants suggest a role for Hoxb8a in cell migration and osteoblast differentiation during appendage formation. Dev. Biol. 293(2), 426–438 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wouter Meuleman
    • 1
    • 3
  • Monique C. M. Welten
    • 1
    • 2
  • Fons J. Verbeek
    • 1
  1. 1.Leiden Institute of Advanced Computer Science (LIACS)Leiden UniversityLeidenThe Netherlands
  2. 2.Division of Molecular Cell Biology, Institute for BiologyLeiden UniversityLeidenThe Netherlands
  3. 3.Information and Communication Theory groupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations