Advertisement

A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants

  • Annalisa Marsico
  • K. Tanuj Sapra
  • Daniel J. Muller
  • Michael Schroeder
  • Dirk Labudde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4216)

Abstract

Misfolding of membrane proteins plays an important role in many human diseases such as retinitis pigmentosa, hereditary deafness, and diabetes insipidus. Little is known about membrane proteins as there are only a very few high-resolution structures. Single molecule force spectroscopy is a novel technique, which measures the force necessary to pull a protein out of a membrane. Such force curves contain valuable information on the protein’s structure, conformation, and inter- and intra-molecular forces. High-throughput force spectroscopy experiments generate hundreds of force curves including spurious ones and good curves, which correspond to different unfolding pathways. As it is not known what is the origin of the interactions that estabilish unfolding barriers, in the present work we analyse the unfolding patterns coming from experiments of unfolding of bacteriorhodopsin and four mutants (P50A, P91A, P186A and M56). We correlate the postition, magnitude and probability of occurrence of force peaks with the results of a bioinformatics analysis of residue conservations, structural alignments and residue-residue contact area in the wild type and in the mutants, in order to gain insights about the interaction pattern stabilizing bacteriorhodopsin structure. From residue-residue contact area calculations we show that the analysed point mutations do not affect the stability of the protein in a significant way. We conclude that, even if the arrangement of intra-moleular interactions locally change in the mutated structures, the overall structural stability is not affected.

Keywords

Force Curve Conservation Score Force Spectroscopy Purple Membrane Worm Like Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowie, J.U.: Solving the membrane protein folding problem. Nature 438(7068), 581–589 (2005)CrossRefGoogle Scholar
  2. 2.
    Eddy, S.R.: What is dynamic programming? Nature Biotechnology 22(7), 909–910 (2004)CrossRefGoogle Scholar
  3. 3.
    Faham, S., Yang, D., Bare, E., Yohannan, S., Whitelegge, J.P., Bowie, J.U.: Side-chain contributions to membrane protein structure and stability. J. Mol. Biol. 335(1), 297–305 (2004)CrossRefGoogle Scholar
  4. 4.
    Filipek, S., Teller, D.C., Palczewski, K., Stenkamp, R.: The crystallographic model of rhodopsin and its use in studies of other g protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 375–397 (2003)CrossRefGoogle Scholar
  5. 5.
    Holm, L., Park, J.: Dalilite workbench for protein structure comparison. Bioinformatics 16(6), 566–567 (2000)CrossRefGoogle Scholar
  6. 6.
    Janovjak, H., Struckmeier, J., Hubain, M., Kedrov, A., Kessler, M., Muller, D.J.: Probing the energy landscape of the membrane protein br. Structure 12(5), 871–879 (2004)CrossRefGoogle Scholar
  7. 7.
    Janshoff, A., Neitzert, M., Oberdorfer, Y., Fuchs, H.: Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem. Int. Ed Engl. 39(18), 3212–3237 (2000)Google Scholar
  8. 8.
    Kessler, M., Gottschalk, K.E., Janovjak, H., Muller, D.J., Gaub, H.E.: Bacteriorhodopsin folds into the membrane against an external force. J. Mol. Biol. 357(2), 644–654 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuhn, M., Janovjak, H., Hubain, M., Muller, D.J.: Automated alignment and pattern recognition of single-molecule force spectroscopy data. J. Microsc. 218(Pt 2), 125–132 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Marsico, A., Sapra, K.T., Muller, D., Labudde, D., Schroeder, M.: A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single molecule force spectroscopy. J. Bioinformatics (accepted)Google Scholar
  11. 11.
    Mirzadegan, T., Benko, G., Filipek, S., Palczewski, K.: Sequence analyses of g-protein coupled receptors: similarities to rhodopsin. Biochemistry 42(10), 2759–2767 (2003)CrossRefGoogle Scholar
  12. 12.
    Mogi, T., Stern, L.J., Chao, B.H., Khorana, H.G.: Structure-function studies on bacteriorhodopsin. viii. substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids. J. Biol. Chem. 264(24), 14192–14196 (1989)Google Scholar
  13. 13.
    Muller, D., Sass, H., Muller, S., Buldt, G., Engel, A.: Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 33(285), 1903–1909 (1999)CrossRefGoogle Scholar
  14. 14.
    Muller, D.J., Kessler, M., Oesterhelt, F., Moller, C., Oesterhelt, D., Gaub, H.: Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys. J. 83(6), 3578–3588 (2002)CrossRefGoogle Scholar
  15. 15.
    Oesterhelt, D., Stoeckenius, W.: Isolation of the cell membrane of halobacterium halobium and its fraction into red and purple membrane. Methods Enzymol. 31, 667–678 (1974)CrossRefGoogle Scholar
  16. 16.
    Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H., Muller, D.J.: Unfolding pathways of individual bacteriorhodopsins. Science 288(5463), 143–146 (2000)CrossRefGoogle Scholar
  17. 17.
    Onuchic, J.N., Wolynes, P.G.: Theory of protein folding. Current Opinion in Structural Biology (14), 70–75 (2004)CrossRefGoogle Scholar
  18. 18.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by afm. Science 276(5315), 1109–1112 (1997)CrossRefGoogle Scholar
  19. 19.
    Sander, C., Schneider, R.: Database of homlogy-derived protein structures and structural meaning of sequence alignment. Proteins 101(9), 56–68 (1991)CrossRefGoogle Scholar
  20. 20.
    Sapra, K.T., Besir, H., Oesterhelt, D., Muller, D.J.: Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J. Mol. Biol. 355(4), 640–650 (2006)CrossRefGoogle Scholar
  21. 21.
    Sobolev, V., Eyal, E., Gerzon, S., Potapov, V., Babor, M., Prilusky, J., Edelman, M.: Space: a suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Research 33(4), 39–43 (2005)CrossRefGoogle Scholar
  22. 22.
    Sobolev, V., Sorokine, A., Prilusky, E., Edelman, M.: Automated analysis of interatomic contacts in proteins. Bioinformatics 15(4), 321–332 (1999)CrossRefGoogle Scholar
  23. 23.
    Yohannan, S., Faham, S., Yang, D., Whitelegge, P., Bowie, J.: The evolution of transmembrane helix kinks and the structural diverstity of g protein-coupled receptors. PNAs 101(4), 959–963 (2003)CrossRefGoogle Scholar
  24. 24.
    Zhuang, X., Rief, M.: Single-molecule folding. Curr. Opin. Struct. Biol. 13(1), 88–97 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Annalisa Marsico
    • 1
  • K. Tanuj Sapra
    • 1
  • Daniel J. Muller
    • 1
  • Michael Schroeder
    • 1
  • Dirk Labudde
    • 1
  1. 1.BiotecDresden University of TechnologyGermany

Personalised recommendations