Skip to main content

A Fast Temporal Texture Synthesis Algorithm Using Segment Genetic Algorithm

  • Conference paper
  • 1084 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4203)

Abstract

Texture synthesis is a very active research area in computer vision and graphics, and temporal texture synthesis is one subset of it. We present a new temporal texture synthesis algorithm, in which a segment genetic algorithm is introduced into the processes of synthesizing videos. In the algorithm, by analyzing and processing a finite source video clip, Infinite video sequences that are played smoothly in vision can be obtained. Comparing with many temporal texture synthesis algorithms nowadays, this algorithm can get high-quality video results without complicated pre-processing of source video while it improves the efficiency of synthesis. It is analyzed in this paper that how the population size and the Max number of generations influence the speed and quality of synthesis.

Keywords

  • Video Sequence
  • Texture Synthesis
  • Video Object
  • Source Video
  • Segment Population

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. Computer Graphics, ACM SIGGRAPH, 229–238 (1995)

    Google Scholar 

  2. Bonet, J.S.D.: Multiresolution sampling procedure for analysis and synthesis of texture images. Computer Graphics, ACM SIGGRAPH, 361–368 (1997)

    Google Scholar 

  3. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: International Conference on Computer Vision, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  4. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40(1), 49–70 (2000)

    CrossRef  MATH  Google Scholar 

  5. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. Computer Graphics, ACM SIGGRAPH, 479–488 (2000)

    Google Scholar 

  6. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics 20(3), 127–150 (2001)

    CrossRef  Google Scholar 

  7. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of SIGGRAPH 2001, pp. 341–346 (2001)

    Google Scholar 

  8. Schödl, A., Szeliski, R., Salesin, D.H., Essa, I.A.: Video textures. In: Proceedings of SIGGRAPH 2000, pp. 489–498 (2000)

    Google Scholar 

  9. Schödl, A., Essa, I.A.: Controlled animation of video sprites. In: Proceedings of ACM Symposium on Computer Animation 2002, pp. 121–127 (2002)

    Google Scholar 

  10. Wang, Y., Zhu, S.C.: A generative model for textured motion: Analysis and synthesis. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 583–598. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Doretto, G., Chiuso, A., Soatto, S., Wu, Y.: Dynamic textures. International Journal of Computer Vision 2003 51(2), 91–109 (2003)

    CrossRef  MATH  Google Scholar 

  12. Kwatra, V., Schödl, A., Essa, I.A., Turk, G., Bobick, A.: Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In: Proceedings of ACM SIGGRAPH 2003, pp. 277–286 (2003)

    Google Scholar 

  13. Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosala, P.K.: Flow-based video synthesis and editing. In: Proc. of ACM SIGGRAPH 2004, pp. 360–363 (2004)

    Google Scholar 

  14. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  15. Nagasaka, A., Tanaka, Y.: Automatic video indexing and full-video search for object appearances. In: Knuth, E., Wegner, L.M. (eds.) IFIP Proceedings of Visual Database Systems, pp. 113–127. North-Holland, Amsterdam (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wen-hui, L., Yu, M., Zhen-hua, Z., Dong-fei, L., Jian-yuan, W. (2006). A Fast Temporal Texture Synthesis Algorithm Using Segment Genetic Algorithm. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_9

Download citation

  • DOI: https://doi.org/10.1007/11875604_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics