Advertisement

A Conditional Model for Tonal Analysis

  • Daniele P. Radicioni
  • Roberto Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4203)

Abstract

Tonal harmony analysis is arguably one of the most sophisticated tasks that musicians deal with. It combines general knowledge with contextual cues, being ingrained with both faceted and evolving objects, such as musical language, execution style, or even taste. In the present work we introduce breve, a system for tonal analysis. breve automatically learns to analyse music using the recently developed framework of conditional models. The system is presented and assessed on a corpus of Western classical pieces from the 18 th to the late 19 th Centuries repertoire. The results are discussed and interesting issues in modeling this problem are drawn.

Keywords

Conditional Random Field Conditional Model Pitch Class Perceptron Algorithm Template Match Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bent, I. (ed.): Music Analysis in the Nineteenth Century. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)Google Scholar
  3. 3.
    Sloboda, J.: The Musical Mind. The Cognitive Psychology of Music. Oxford University Press, Oxford (1985)Google Scholar
  4. 4.
    Widmer, G.: On the Potential of Machine Learning for Music Research. In: Readings in Music and Artificial Intelligence, Harwood Academic Publishers (2000)Google Scholar
  5. 5.
    Lopes de Mantaras, R., Arcos, J.: AI and Music: From Composition to Expressive Performance. AI Magazine 23, 43–57 (2002)Google Scholar
  6. 6.
    Temperley, D.: The Cognition of Basic Musical Structures. MIT, Cambridge (2001)Google Scholar
  7. 7.
    Pardo, B., Birmingham, W.P.: Algorithms for Chordal Analysis. Computer Music Journal 26, 27–49 (2002)CrossRefGoogle Scholar
  8. 8.
    Kostka, S., Payne, D.: Tonal Harmony. McGraw-Hill, New York (1984)Google Scholar
  9. 9.
    Schoenberg, A.: Structural Functions in Harmony. Norton, New York (1969)Google Scholar
  10. 10.
    Ebcioglu, K.: An Expert System for Harmonizing Chorales in the Style of J. S. Bach. Journal of Logic Programing 8(1), 145–185 (1990)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Winograd, T.: Linguistics and Computer Analysis of Tonal Harmony. Journal of Music Theory 12, 2–49 (1968)CrossRefGoogle Scholar
  12. 12.
    Raphael, C., Stoddard, J.: Functional Harmonic Analysis Using Probabilistic Models. Computer Music Journal 28(3), 45–52 (2004)CrossRefGoogle Scholar
  13. 13.
    Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2002)Google Scholar
  14. 14.
    Radicioni, D.P., Esposito, R.: Learning Tonal Harmony from Bach Chorales. In: Fum, D., del Missier, F., Stocco, A. (eds.) Procs. of the 7th International Conference on Cognitive Modelling (2006)Google Scholar
  15. 15.
    Dietterich, T.: Machine Learning for Sequential Data: A Review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Dietterich, T.G., Ashenfelter, A., Bulatov, Y.: Training Conditional Random Fields via Gradient Tree Boosting. In: Procs. of the 21st International Conference on Machine Learning, ACM Press, New York (2004)Google Scholar
  17. 17.
    McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy Markov Models for Information Extraction and Segmentation. In: Procs. of the 17th International Conference on Machine Learning, pp. 591–598. Morgan Kaufmann, San Francisco (2000)Google Scholar
  18. 18.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Procs. of the 18st International Conference on Machine Learning, San Francisco, CA, pp. 282–289 (2001)Google Scholar
  19. 19.
    Altun, Y., Hofmann, T., Smola, A.J.: Gaussian Process Classification for Segmenting and Annotating Sequences. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-first International Conference on Machine Learning, Banff, Canada, ACM Press, New York (2004)Google Scholar
  20. 20.
    Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review 65, 386–408 (1958); Reprinted in Neurocomputing, MIT Press (1998)Google Scholar
  21. 21.
    Radicioni, D.P., Esposito, R.: Sequential Learning for Tonal Analysis. Technical Report RT 92/05, Università degli Studi di Torino (December 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniele P. Radicioni
    • 1
  • Roberto Esposito
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly

Personalised recommendations